Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Sci Food ; 8(1): 4, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200022

RESUMO

In this study, an exhaustive chemical characterization of a Dunaliella salina (DS) microalga extract obtained using supercritical fluids has been performed, and its neuroprotective capacity has been evaluated in vivo using an Alzheimer's disease (AD) transgenic model of Caenorhabditis elegans (strain CL4176). More than 350 compounds were annotated in the studied DS extract, with triacylglycerols, free fatty acids (FAs), carotenoids, apocarotenoids and glycerol being the most abundant. DS extract significantly protects C. elegans in a dose-dependent manner against Aß-peptide paralysis toxicity, after 32 h, 53% of treated worms at 50 µg/mL were not paralyzed. This concentration was selected to further evaluate the transcriptomics and metabolomics changes after 26 h by using advanced analytical methodologies. The RNA-Seq data showed an alteration of 150 genes, mainly related to the stress and detoxification responses, and the retinol and lipid metabolism. The comprehensive metabolomics and lipidomics analyses allowed the identification of 793 intracellular metabolites, of which 69 were significantly altered compared to non-treated control animals. Among them, different unsaturated FAs, lysophosphatidylethanolamines, nucleosides, dipeptides and modified amino acids that have been previously reported as beneficial during AD progression, were assigned. These compounds could explain the neuroprotective capacity observed, thus, providing with new evidences of the protection mechanisms of this promising extract.

2.
Food Res Int ; 172: 113128, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689893

RESUMO

Citrus sinensis by-products are a promising source of neuroprotective molecules. In this study, a pressurized liquid extract of Citrus by-products (PLE100) has been extensively characterized, and its neuroprotective capacity tested in the Caenorhabditis elegans strain CL4176, a validated in vivo model of Alzheimer's disease (AD). More than 450 compounds have been annotated in the extract, being triacylglycerols (TGs), stigmastanes, fatty acids (FAs) and carbohydrates the most abundant. The results demonstrate that worms PLE100-treated are significantly protected in a dose-dependent manner against the Aß-peptide paralysis toxicity. The RNA-Seq data showed an alteration of 294 genes mainly related to the stress response defense along with genes involved in the lipid transport and metabolism. Moreover, the comprehensive metabolomics study allowed the identification of 818 intracellular metabolites, of which 54 were significantly altered (mainly lipids). The integration of these and previous results provides with new evidences of the protection mechanisms of this promising extract.


Assuntos
Doença de Alzheimer , Citrus sinensis , Citrus , Animais , Doença de Alzheimer/tratamento farmacológico , Caenorhabditis elegans , Extratos Vegetais/farmacologia
3.
Foods ; 11(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36010464

RESUMO

Genetic, environmental and nutritional factors are suggested as primary factors of Alzheimer's disease (AD), and secondary metabolites such as polyphenols present in thinned peaches are considered as good candidates for AD prevention. Thinned peaches are usually dried to avoid putrefaction, but the effects of the drying method and the extraction process on the polyphenol composition and the neuroprotective potential have never been addressed. In this work, a pressurized liquid extraction (PLE) method was optimized and applied to thinned peaches dried under different conditions, and their neuroprotective potential was evaluated in vitro. In addition, the PLE extracts were characterized via HPLC-Q-TOF-MS/MS, and a permeability assay was performed to evaluate the ability of the identified metabolites to cross the blood-brain barrier (BBB). The PLE extracts obtained from freeze-dried (FD) samples with 50% ethanol in water at 180 °C showed the best neuroprotective potential. Finally, among the 81 metabolites identified, isoferulic acid, 4-methyldaphnetin, coniferyl aldehyde and 3,4-dihydroxyacetophenone were found at higher concentrations in FD extracts. These metabolites are able to cross the BBB and are positively correlated with the neuroprotective potential, suggesting FD together with PLE extraction as the best combination to exploit the neuroprotective capacity of thinned peaches.

4.
Front Nutr ; 9: 924596, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782945

RESUMO

Plants and agri-food by-products represent a wide and renewable source of bioactive compounds with neuroprotective properties. In this research, various green extraction techniques were employed to recover bioactive molecules from Kalanchoe daigremontiana (kalanchoe), epicarp of Cyphomandra betacea (tamarillo), and cooperage woods from Robinia pseudoacacia (acacia) and Nothofagus pumilio (lenga), as well as a reference extract (positive control) from Rosmarinus officinalis L. (rosemary). The neuroprotective capacity of these plant extracts was evaluated in a set of in vitro assays, including enzymatic [acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and lipoxygenase (LOX)] and antioxidant [ABTS, and reactive oxygen and nitrogen species (ROS and RNS)] bioactivity tests. Extracts were also submitted to a parallel artificial membrane permeability assay mimicking the blood-brain barrier (PAMPA-BBB) and to two cell viability assays in HK-2 and SH-SY5Y cell lines. Comprehensive phytochemical profiling based on liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (LC-Q-TOF-MS) analysis showed enriched content of phenolic and terpenoid compounds in the target extracts. Moreover, in vitro bioactivity tests showed promising neuroprotective capacity, particularly for supercritical-fluid extraction (SFE) extract from acacia (ABTS IC50 = 0.11 µg ml-1; ROS IC50 = 1.56 µg ml-1; AChE IC50 = 4.23 µg ml-1; BChE IC50 = 1.20 µg ml-1; and LOX IC50 = 4.37 µg ml-1), whereas PAMPA-BBB assays revealed high perfusion capacity of some representative compounds, such as phenolic acids or flavonoids. Regarding cytotoxic assays, tamarillo and rosemary SFE extracts can be considered as non-toxic, acacia SFE extract and lenga pressurized liquid extraction (PLE) extract as mild-cytotoxic, and kalanchoe as highly toxic extracts. The obtained results demonstrate the great potential of the studied biomass extracts to be transformed into valuable food additives, food supplements, or nutraceuticals with promising neuroprotective properties.

5.
Food Chem X ; 13: 100242, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35498984

RESUMO

Pressurized liquid extraction (PLE) conditions were optimized to improve the recovery of orange (Citrus sinensis) by-products terpenoids. The neuroprotective potential of the PLE extracts were tested against a set of in-vitro assay (antioxidant (ABTS), reactive oxygen/nitrogen species (ROS/RNS)) as well as enzymatic tests (acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and lipoxygenase (LOX)). Gas chromatography coupled to high-resolution mass spectrometry (GC-q-TOF-MS) analysis revealed a higher enrichment in mono- and sesquiterpenoids of the PLE extracts with the highest neuroprotection capacity. In-silico molecular docking analysis showed the specific interaction of representative terpenoids with enzymes active sites. The results demonstrate that the selected extract at 100 °C and 30 minutes possesses high antioxidant (ABTSIC50 = 13.5 µg mL-1; ROSIC50 = 4.4 µg mL-1), anti-cholinesterase (AChEIC50 = 137.1 vg  L-1; BChEIC50 = 147.0 µg mL-1) and anti-inflammatory properties (against IL-6 and LOXIC50 = 76.1 µg mL-1), with low cytotoxicity and protection against L-glutamic acid in cell models.

6.
Int J Mol Sci ; 24(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36613976

RESUMO

Agrifood by-products and microalgae represent a low-cost and valuable source of bioactive compounds with neuroprotective properties. However, the neuroprotective effectiveness of therapeutic molecules can be limited by their capacity to cross the blood-brain barrier (BBB) and reach the brain. In this research, various green extracts from Robinia pseudoacacia (ASFE), Cyphomandra betacea (T33), Coffea arabica (PPC1), Olea europaea L., (OL-SS), Citrus sinensis (PLE100) by-products and from the microalgae Dunaliella salina (DS) that have demonstrated in vitro neuroprotective potential were submitted to an in vitro BBB permeability and transport assay based on an immortalized human brain microvascular endothelial cells (HBMEC) model. Toxicity and BBB integrity tests were performed, and the transport of target bioactive molecules across the BBB were evaluated after 2 and 4 h of incubation using gas and liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (GC/LC-Q-TOF-MS). The HBMEC-BBB transport assay revealed a high permeability of representative neuroprotective compounds, such as mono- and sesquiterpenoids, phytosterols and some phenolic compounds. The obtained results from the proposed in vitro BBB cellular model provide further evidence of the neuroprotective potential of the target natural extracts, which represent a promising source of functional ingredients to be transferred into food supplements, food additives, or nutraceuticals with scientifically supported neuroprotective claims.


Assuntos
Barreira Hematoencefálica , Microalgas , Humanos , Células Endoteliais , Encéfalo/irrigação sanguínea , Cromatografia Gasosa-Espectrometria de Massas/métodos
7.
Anal Bioanal Chem ; 414(18): 5357-5371, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34923590

RESUMO

Alzheimer's disease (AD) is the most common form of dementia caused by a progressive loss of neurons from different regions of the brain. This multifactorial pathophysiology has been widely characterized by neuroinflammation, extensive oxidative damage, synaptic loss, and neuronal cell death. In this sense, the design of multi-target strategies to prevent or delay its progression is a challenging goal. In the present work, different in vitro assays including antioxidant, anti-inflammatory, and anti-cholinergic activities of a carotenoid-enriched extract from Dunaliella salina microalgae obtained by supercritical fluid extraction are studied. Moreover, its potential neuroprotective effect in the human neuron-like SH-SY5Y cell model against remarkable hallmarks of AD was also evaluated. In parallel, a comprehensive metabolomics study based on the use of charged-surface hybrid chromatography (CSH) and hydrophilic interaction liquid chromatography (HILIC) coupled to high-resolution tandem mass spectrometry (Q-TOF MS/MS) was applied to evaluate the effects of the extract on the metabolism of the treated cells. The use of advanced bioinformatics and statistical tools allowed the identification of more than 314 metabolites in SH-SY5Y cells, of which a great number of phosphatidylcholines, triacylglycerols, and fatty acids were significantly increased, while several phosphatidylglycerols were decreased, compared to controls. These lipidomic changes in cells along with the possible role exerted by carotenoids and other minor compounds on the cell membrane might explain the observed neuroprotective effect of the D. salina extract. However, future experiments using in vivo models to corroborate this hypothesis must be carried out.


Assuntos
Doença de Alzheimer , Neuroblastoma , Fármacos Neuroprotetores , Doença de Alzheimer/tratamento farmacológico , Carotenoides/química , Carotenoides/farmacologia , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Espectrometria de Massas em Tandem
8.
Front Nutr ; 8: 769617, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869538

RESUMO

Tamarillo (Cyphomandra betacea (Cav.) Sendt.), or tree tomato, is a tropical fruit from the Andean region of South America; it is highly rich in vitamins, minerals, and polyphenolic compounds. In this study, extracts from tamarillo epicarp (TE) were obtained by pressurized liquid extraction (PLE), and their in-vitro neuroprotective potential was assessed. A central composite design with response surface methodology was performed to optimize PLE as a function of solvent composition and temperature. Selected response variables were extraction yield, total phenolic content (TPC), total flavonoid content (TFC), total carotenoid content (TCC), antioxidant (ABTS), and anti-inflammatory (LOX) activities, and anti-acetylcholinesterase (AChE) inhibitory capacity. According to the desirability function, the optimal conditions were 100% ethanol and 180°C with a 0.87 desirability value. Next, the anti-butyrylcholinesterase enzyme (BChE), reactive oxygen species (ROS), and reactive nitrogen species (RNS) inhibition as well as cytotoxicity in HK-2, THP-1 monocytes, and SH-5YSY neuroblastoma cell lines were studied for the TE extract obtained under optimized conditions. The optimum TE extract provided the following results: extraction yield (36.25%), TPC (92.09 mg GAE/g extract), TFC (4.4 mg QE/g extract), TCC (107.15 mg CE/g extract), antioxidant capacity (ABTS, IC50 = 6.33 mg/ml extract), LOX (IC50 = 48.3 mg/ml extract), and AChE (IC50 = 97.46 mg/ml extract), and showed no toxicity at concentration up to 120 µg/ml extract for all the tested cell lines. Finally, chemical characterization by liquid chromatography-tandem mass spectrometry (UHPLC-q-TOF-MS/MS) of the optimum TE extract exhibited an important presence of hydroxycinnamic acid derivatives and other phenolic acids as well as quercetin hexoside and rutin, as main metabolites responsible for the observed biological properties. All these results suggested that TE, which represents between 8 and 15% of the total fruit, could become a promising natural by-product with a potential "multitarget" activity against Alzheimer's disease.

9.
Food Chem X ; 12: 100140, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-34746747

RESUMO

Pacová (Renealmia petasites Gagnep.) is a Brazilian native plant, usually cultivated in south regions of the country. Pacová was previously reported concerning their possible health benefits, mostly from folk medicine. However, only few works relates the health benefits with the composition of the fruit parts. In this context, this work aimed to bring, for the first time in literature, the chemical characterization in respect to lipid and terpene composition of R. petasites oilseed, performed by three different extraction methods (supercritical fluid extraction (SFE) with CO2, Soxhlet with petroleum ether (SOX), and maceration with hexane (MAC)). SFE was most selective for MUFAs, PUFAs, sesqui- and diterpenes. The main terpene identified in all extracts was 2-carene. The extracts presented poor AChE inhibition, and SOX presented potential inhibitory effect against lipoxygenase activity. Overall, R. petasites oilseed is a natural source of terpenes and their potential health benefits are highly encouraged to be investigated.

10.
Molecules ; 26(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34834042

RESUMO

Ammodaucus leucotrichus is a spontaneous plant endemic of the North African region. An efficient selective pressurized liquid extraction (PLE) method was optimized to concentrate neuroprotective extracts from A. leucotrichus fruits. Green solvents were tested, namely ethanol and water, within a range of temperatures between 40 to 180 °C. Total carbohydrates and total phenolics were measured in extracts, as well as in vitro antioxidant capacity (DPPH radical scavenging), anticholinesterase (AChE) and anti-inflammatory (LOX) activities. Metabolite profiling was carried out by ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight tandem mass spectrometry (UHPLC-ESI-q-TOF-MS/MS), identifying 94 compounds. Multivariate analysis was performed to correlate composition with bioactivity. A remarkable effect of the temperature using water was observed: the higher temperature, the higher extraction yield, the higher total phenolic content, as well as the higher total carbohydrates content. The water extract obtained at 180 °C, 10.34 MPa and 10 min showed meaningful anti-inflammatory (IC50LOX = 39.4 µg/mL) and neuroprotective activities (IC50AChE = 55.6 µg/mL). The Principal Components Analysis (PCA) and the cluster analysis correlated these activities with the presence of carbohydrates and phenolic compounds.


Assuntos
Apiaceae/química , Metabolômica , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/química , Cromatografia Líquida de Alta Pressão , Avaliação de Medicamentos , Espectrometria de Massas em Tandem
11.
Foods ; 10(7)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209864

RESUMO

The neuroprotective potential of 32 natural extracts obtained from olive oil by-products was investigated. The online coupling of supercritical fluid extraction (SFE) and dynamic adsorption/desorption allowed the selective enrichment of olive leaves extracts in different terpenoids' families. Seven commercial adsorbents based on silica gel, zeolite, aluminum oxide, and sea sand were used with SFE at three different extraction times to evaluate their selectivity towards different terpene families. Collected fractions were analyzed by gas chromatography coupled to quadrupole-time-of-flight mass spectrometry (GC-QTOF-MS) to quantify the recoveries of monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20), and triterpenes (C30). A systematic analysis of the neuroprotective activity of the natural extracts was then carried out. Thus, a set of in vitro bioactivity assays including enzymatic (acetylcholinesterase (AChE), butyrylcholinesterase (BChE)), and anti-inflammatory (lipoxidase (LOX)), as well as antioxidant (ABTS), and reactive oxygen and nitrogen species (ROS and RNS, respectively) activity tests were applied to screen for the neuroprotective potential of these extracts. Statistical analysis showed that olive leaves adsorbates from SS exhibited the highest biological activity potential in terms of neuroprotective effect. Blood-brain barrier permeation and cytotoxicity in HK-2 cells and human THP-1 monocytes were studied for the selected olive leaves fraction corroborating its potential.

12.
Food Funct ; 12(1): 302-314, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33300906

RESUMO

Citrus sinensis (orange) by-products represent one of the most abundant citric residues from orange juice industrial production, and are a promising source of health-promoting compounds like terpenes. In this work, different extraction solvents have been employed to increase terpene extraction yield and selectivity from this orange juice by-product. A set of bioactivity assays including enzymatic (acetylcholinesterase (AChE), butylcholinesterase (BChE) and lipoxygenase (LOX)) as well as antioxidant (ABTS, reactive oxygen species (ROS) and reactive nitrogen species (RNS)) activity tests have been applied to investigate the neuroprotective potential of these compounds. New fluorescence-based methodologies were developed for AChE and BChE assays to overcome the drawbacks of these tests when used in vitro to determine the anticholinergic activity of colored extracts. Comprehensive phytochemical profiling based on gas chromatography coupled to quadrupole time of flight mass spectrometry (GC-qTOF-MS) analysis showed ahigh content of mono- and sesquiterpenes in the extracts obtained with ethyl acetate, whereas n-heptane extracts exhibited a large amount of triterpenes and carotenoids. From a neuroprotective activity point of view, ethyl acetate extract is the most promising due to its anticholinergic activity and antioxidant capacity. Finally, a multivariate data analysis revealed a good correlation between some monoterpenes (e.g. nerol or limonene) and the antioxidant capacity of the natural extract, while a group of sesquiterpenes (e.g.δ-Cadinene or nootkatone) showed correlation with the observed AChE, BChE and LOX inhibition capacity. Hydrocarbons mono- and sesquiterpenoids reveal high capacity in vitro to cross the blood-brain barrier (BBB).


Assuntos
Citrus sinensis/química , Citrus sinensis/metabolismo , Sucos de Frutas e Vegetais , Fármacos Neuroprotetores/metabolismo , Terpenos/metabolismo , Acetilcolinesterase/metabolismo , Antioxidantes/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Técnicas In Vitro , Lipoxigenase/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...