Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 928386, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812959

RESUMO

The accumulation of the auxin precursor indole-3-acetamide (IAM) in the ami1 mutant has recently been reported to reduce plant growth and to trigger abiotic stress responses in Arabidopsis thaliana. The observed response includes the induction of abscisic acid (ABA) biosynthesis through the promotion of NCED3 expression. The mechanism by which plant growth is limited, however, remained largely unclear. Here, we investigated the transcriptional responses evoked by the exogenous application of IAM using comprehensive RNA-sequencing (RNA-seq) and reverse genetics approaches. The RNA-seq results highlighted the induction of a small number of genes, including the R2R3 MYB transcription factor genes MYB74 and MYB102. The two MYB factors are known to respond to various stress cues and to ABA. Consistent with a role as negative plant growth regulator, conditional MYB74 overexpressor lines showed a considerable growth reduction. RNA-seq analysis of MYB74 mutants indicated an association of MYB74 with responses to osmotic stress, water deprivation, and seed development, which further linked MYB74 with the observed ami1 osmotic stress and seed phenotype. Collectively, our findings point toward a role for MYB74 in plant growth control and in responses to abiotic stress stimuli.

2.
Int J Mol Sci ; 22(18)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34575927

RESUMO

The indole-3-pyruvic acid pathway is the main route for auxin biosynthesis in higher plants. Tryptophan aminotransferases (TAA1/TAR) and members of the YUCCA family of flavin-containing monooxygenases catalyze the conversion of l-tryptophan via indole-3-pyruvic acid to indole-3-acetic acid (IAA). It has been described that jasmonic acid (JA) locally produced in response to mechanical wounding triggers the de novo formation of IAA through the induction of two YUCCA genes, YUC8 and YUC9. Here, we report the direct involvement of a small number of basic helix-loop-helix transcription factors of the MYC family in this process. We show that the JA-mediated regulation of the expression of the YUC8 and YUC9 genes depends on the abundance of MYC2, MYC3, and MYC4. In support of this observation, seedlings of myc knockout mutants displayed a strongly reduced response to JA-mediated IAA formation. Furthermore, transactivation assays provided experimental evidence for the binding of MYC transcription factors to a particular tandem G-box motif abundant in the promoter regions of YUC8 and YUC9, but not in the promoters of the other YUCCA isogenes. Moreover, we demonstrate that plants that constitutively overexpress YUC8 and YUC9 show less damage after spider mite infestation, thereby underlining the role of auxin in plant responses to biotic stress signals.


Assuntos
Proteínas de Arabidopsis/genética , Ciclopentanos/metabolismo , Oxigenases de Função Mista/genética , Motivos de Nucleotídeos , Oxilipinas/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc/metabolismo , Estresse Fisiológico/genética , Fatores de Ligação G-Box , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Ligação Proteica
3.
Int J Mol Sci ; 22(4)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670805

RESUMO

The major auxin, indole-3-acetic acid (IAA), is associated with a plethora of growth and developmental processes including embryo development, expansion growth, cambial activity, and the induction of lateral root growth. Accumulation of the auxin precursor indole-3-acetamide (IAM) induces stress related processes by stimulating abscisic acid (ABA) biosynthesis. How IAM signaling is controlled is, at present, unclear. Here, we characterize the ami1rooty double mutant, that we initially generated to study the metabolic and phenotypic consequences of a simultaneous genetic blockade of the indole glucosinolate and IAM pathways in Arabidopsisthaliana. Our mass spectrometric analyses of the mutant revealed that the combination of the two mutations is not sufficient to fully prevent the conversion of IAM to IAA. The detected strong accumulation of IAM was, however, recognized to substantially impair seed development. We further show by genome-wide expression studies that the double mutant is broadly affected in its translational capacity, and that a small number of plant growth regulating transcriptional circuits are repressed by the high IAM content in the seed. In accordance with the previously described growth reduction in response to elevated IAM levels, our data support the hypothesis that IAM is a growth repressing counterpart to IAA.


Assuntos
Redes Reguladoras de Genes , Ácidos Indolacéticos/metabolismo , Biogênese de Organelas , Ribossomos/metabolismo , Arabidopsis/embriologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Germinação , Ácidos Indolacéticos/química , Redes e Vias Metabólicas , Modelos Moleculares , Mutação/genética , Fenótipo , Biossíntese de Proteínas/genética , Reprodutibilidade dos Testes , Sementes/metabolismo , Transcrição Gênica
4.
Sci Total Environ ; 760: 144092, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33341626

RESUMO

The Amazon rainforest is the world's largest tropical forest, and this biome may be a significant contributor to primary biological aerosol (PBA) emissions on a global scale. These aerosols also play a pivotal role in modulating ecosystem dynamics, dispersing biological material over geographic barriers and influencing climate through radiation absorption, light scattering, or acting as cloud condensation nuclei. Despite their importance, there are limited studies investigating the effect of environmental variables on the bioaerosol composition in the Amazon rainforest. Here we present a 16S rRNA gene-based amplicon sequencing approach to investigate the bacterial microbiome in aerosols of the Amazon rainforest during distinct seasons and at different heights above the ground. Our data revealed that seasonal changes in temperature, relative humidity, and precipitation are the primary drivers of compositional changes in the Amazon rainforest aerosol microbiome. Interestingly, no significant differences were observed in the bacterial community composition of aerosols collected at ground and canopy levels. The core airborne bacterial families present in Amazon aerosol were Enterobacteriaceae, Beijerinckiaceae, Polyangiaceae, Bacillaceae and Ktedonobacteraceae. By correlating the bacterial taxa identified in the aerosol with literature data, we speculate that the phyllosphere may be one possible source of airborne bacteria in the Amazon rainforest. Results of this study indicate that the aerosol microbiota of the Amazon Rainforest are fairly diverse and principally impacted by seasonal changes in temperature and humidity.


Assuntos
Microbiota , Floresta Úmida , Aerossóis , Florestas , Humanos , RNA Ribossômico 16S/genética
5.
J Exp Bot ; 72(2): 459-475, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33068437

RESUMO

The evolutionary success of plants relies to a large extent on their extraordinary ability to adapt to changes in their environment. These adaptations require that plants balance their growth with their stress responses. Plant hormones are crucial mediators orchestrating the underlying adaptive processes. However, whether and how the growth-related hormone auxin and the stress-related hormones jasmonic acid, salicylic acid, and abscisic acid (ABA) are coordinated remains largely elusive. Here, we analyse the physiological role of AMIDASE 1 (AMI1) in Arabidopsis plant growth and its possible connection to plant adaptations to abiotic stresses. AMI1 contributes to cellular auxin homeostasis by catalysing the conversion of indole-acetamide into the major plant auxin indole-3-acetic acid. Functional impairment of AMI1 increases the plant's stress status rendering mutant plants more susceptible to abiotic stresses. Transcriptomic analysis of ami1 mutants disclosed the reprogramming of a considerable number of stress-related genes, including jasmonic acid and ABA biosynthesis genes. The ami1 mutants exhibit only moderately repressed growth but an enhanced ABA accumulation, which suggests a role for AMI1 in the crosstalk between auxin and ABA. Altogether, our results suggest that AMI1 is involved in coordinating the trade-off between plant growth and stress responses, balancing auxin and ABA homeostasis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Reguladores de Crescimento de Plantas
6.
J Environ Manage ; 240: 441-450, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30959433

RESUMO

The standardization and unification of the procedures to analyze and quantify the airborne pollen concentrations are very important topics. In this work, the effectiveness of the two most used adhesives in aerobiological sampling, silicone prepared with cyclohexane solvent (Silicone) and petroleum jelly (Vaseline), was compared under outdoor conditions. This comparison was carried out using the traditional method based on the identification and quantification by optical microscopy (OM) of the airborne pollen and the novel methodology by high-throughput sequencing analysis (HTS). Globally, the results from both methods of analysis (OM and HTS) showed a good agreement between the two adhesives tested regarding the abundance of the main pollen types present in the samples: Cupressaceae, Olea, Poaceae, Platanus, Quercus. We concluded that the results from both adhesives are comparable data. Furthermore, the comparisons between methodologies, OM vs. HTS, showed that both techniques can accurately identify the most abundant pollen types in the atmosphere for the studied periods, with a good agreement of their relative abundances especially when the airborne pollen diversity is low but showing some divergences as the number of pollen types increases.


Assuntos
Adesivos , Sequenciamento de Nucleotídeos em Larga Escala , Monitoramento Ambiental , Microscopia , Pólen , Estações do Ano
7.
Environ Res ; 171: 546-549, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30763875

RESUMO

Legionellosis is a severe pneumonic infection caused by inhaling bacteria of the genus Legionella. Most cases reported in the USA and Europe are associated with the species Legionella pneumophila. This Gram-negative bacterium can survive within a wide spectrum of temperatures, and be transmitted via aerosols from multiple aquatic sources: fountains, thermal spas and other water systems. Although the PCR is one of the most popular methods to verify its presence in environmental or clinical samples, the direct application of this technique to ambient air samples is unusual because of the scarce material in the specimens. Here, we have developed a two-PCR assay, carried out over the V3 and V5 hypervariable regions of the 16S rRNA gene, to detect specifically the pathogenic bacteria Legionella pneumophila in outdoor air samples with low concentration of DNA. The application of this protocol does not require culture and retrieves quick results to activate the corresponding public alerts to prevent legionellosis outbreaks.


Assuntos
Microbiologia do Ar , Surtos de Doenças/prevenção & controle , Legionella pneumophila , Legionelose/prevenção & controle , Europa (Continente) , Humanos , Legionella , RNA Ribossômico 16S , Microbiologia da Água
8.
Front Plant Sci ; 8: 36, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28174581

RESUMO

Nitrilases consist of a group of enzymes that catalyze the hydrolysis of organic cyanides. They are found ubiquitously distributed in the plant kingdom. Plant nitrilases are mainly involved in the detoxification of ß-cyanoalanine, a side-product of ethylene biosynthesis. In the model plant Arabidopsis thaliana a second group of Brassicaceae-specific nitrilases (NIT1-3) has been found. This so-called NIT1-subfamily has been associated with the conversion of indole-3-acetonitrile (IAN) into the major plant growth hormone, indole-3-acetic acid (IAA). However, apart of reported functions in defense responses to pathogens and in responses to sulfur depletion, conclusive insight into the general physiological function of the NIT-subfamily nitrilases remains elusive. In this report, we test both the contribution of the indole-3-acetaldoxime (IAOx) pathway to general auxin biosynthesis and the influence of altered nitrilase expression on plant development. Apart of a comprehensive transcriptomics approach to explore the role of the IAOx route in auxin formation, we took a genetic approach to disclose the function of NITRILASE 1 (NIT1) of A. thaliana. We show that NIT1 over-expression (NIT1ox) results in seedlings with shorter primary roots, and an increased number of lateral roots. In addition, NIT1ox plants exhibit drastic changes of both free IAA and IAN levels, which are suggested to be the reason for the observed phenotype. On the other hand, NIT2RNAi knockdown lines, capable of suppressing the expression of all members of the NIT1-subfamily, were generated and characterized to substantiate the above-mentioned findings. Our results demonstrate for the first time that Arabidopsis NIT1 has profound effects on root morphogenesis in early seedling development.

9.
Plants (Basel) ; 3(3): 324-47, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-27135507

RESUMO

Amidases [EC 3.5.1.4] capable of converting indole-3-acetamide (IAM) into the major plant growth hormone indole-3-acetic acid (IAA) are assumed to be involved in auxin de novo biosynthesis. With the emerging amount of genomics data, it was possible to identify over forty proteins with substantial homology to the already characterized amidases from Arabidopsis and tobacco. The observed high conservation of amidase-like proteins throughout the plant kingdom may suggest an important role of theses enzymes in plant development. Here, we report cloning and functional analysis of four, thus far, uncharacterized plant amidases from Oryza sativa, Sorghum bicolor, Medicago truncatula, and Populus trichocarpa. Intriguingly, we were able to demonstrate that the examined amidases are also capable of converting phenyl-2-acetamide (PAM) into phenyl-2-acetic acid (PAA), an auxin endogenous to several plant species including Arabidopsis. Furthermore, we compared the subcellular localization of the enzymes to that of Arabidopsis AMI1, providing further evidence for similar enzymatic functions. Our results point to the presence of a presumably conserved pathway of auxin biosynthesis via IAM, as amidases, both of monocot, and dicot origins, were analyzed.

10.
Plant Signal Behav ; 8(11): e26363, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24022251

RESUMO

Auxin is associated with the regulation of virtually every aspect of plant growth and development. Many previous genetic and biochemical studies revealed that, among the proposed routes for the production of auxin, the so-called indole-3-pyruvic acid (IPA) pathway is the main source for indole-3-acetic acid (IAA) in plants. The IPA pathway involves the action of 2 classes of enzymes, tryptophan-pyruvate aminotransferases (TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1(TAA1)/TRYPTOPHAN AMINOTRANSFERASE RELATED (TAR)) and flavin monooxygenases (YUCCA). Both enzyme classes appear to be encoded by small gene families in Arabidopsis consisting of 5 and 11 members, respectively. We recently showed that it is possible to induce transcript accumulation of 2 YUCCA genes, YUC8 and YUC9, by methyl jasmonate treatment. Both gene products were demonstrated to contribute to auxin biosynthesis in planta. (1) Here we report that the overexpression of YUC8 as well as YUC9 led to strong lignification of plant aerial tissues. Furthermore, new evidence indicates that this abnormally strong secondary growth is linked to increased levels of ethylene production.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Etilenos/biossíntese , Ácidos Indolacéticos/metabolismo , Lignina/metabolismo , Oxigenases de Função Mista/metabolismo , Transdução de Sinais , Ácidos Aminoisobutíricos/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Bioensaio , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fenótipo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...