Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Biochem ; 268(24): 6369-78, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11737191

RESUMO

The antineoplastic ether phospholipid 1-O-octadecyl-2-O-methyl-sn-glycero-3-phophocholine (ET-18-OCH3) was incorporated into dimyristoylglycerophosphocholine (Myr2Gro-PCho)/dimyristoylglycerophosphoserine (Myr2Gro-PSer) (4 : 1 molar ratio) mixtures. Electron microscopy showed that the addition of ET-18-OCH3 reduced the size of the vesicles. Small vesicles could be detected even at 60 mol% ET-18-OCH3. Sedimentation studies showed the increasing presence of phospholipids in the supernatant, while turbidity measurements indicated a decrease in absorbance as the ET-18-OCH3 concentration was increased. These findings may be explained by the formation of small vesicles and/or mixed micelles. Infrared spectroscopy showed that at 60 mol% the fluidity of the membrane was considerably increased at temperatures below the phase transition, with only a small increase in the proportion of gauche isomers after the gel-to-fluid phase transition of this sample. On the other hand, protein kinase Calpha (PKCalpha) activity progressively decreased when ET-18-OCH3 was incorporated into multilamellar vesicles, reaching a minimum value at 20 mol%, this inhibition being attributed to the modification of the membrane produced by a cone-shaped molecule. At higher concentrations, however, ET-18-OCH3 activated the enzyme with a maximum being attained at 50 mol%. This activation being attributed to the formation of small vesicles and/or micelles. At still higher concentrations of ET-18-OCH3 the enzyme was once again inhibited, inhibition being almost complete at 80 mol%. When PKC was assayed using large unilamellar vesicles a slight activation was observed at very low ET-18-OCH3 concentrations.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Isoenzimas/antagonistas & inibidores , Éteres Fosfolipídicos/farmacologia , Proteína Quinase C/antagonistas & inibidores , Animais , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Isoenzimas/metabolismo , Microscopia Eletrônica , Ressonância Magnética Nuclear Biomolecular , Proteína Quinase C/metabolismo , Proteína Quinase C-alfa , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Biochemistry ; 38(24): 7747-54, 1999 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-10387014

RESUMO

The activation of protein kinase C alpha was studied by using a lipid system consisting of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine (POPS) (molar ratio 4:1) and different proportions of 1-palmitoyl-2-oleoyl-sn-glycerol (POG). The phase behavior of the lipidic system was characterized by using differential scanning calorimetry and 31P NMR, and a phase diagram was elaborated. The results suggested the formation of two diacylglycerol/phospholipid complexes, one at 15 mol % of POG and the second at 30 mol % of POG. These two complexes would define the three regions of the phase diagram: in the first region (concentrations of POG lower than 15 mol %) there is gel-gel immiscibility at temperatures below that of the phase transition between C1 and pure phospholipid, and a fluid lamellar phase above of the phase transition. In the second region (between 15 and 30 mol % of POG), gel-gel immiscibility between C1 and C2 with fluid-fluid immiscibility was observed, while inverted hexagonal HII and isotropic phases were detected by 31P NMR. In the third region (concentrations of POG higher than 30 mol %), gel-gel immiscibility seemed to occur between C2 and pure POG along with fluid-fluid immiscibility, while an isotropic phase was detected by 31P NMR. When PKC alpha activity was measured, as a function of POG concentration, maximum activity was found at POG concentrations as low as 5-10 mol %; the activity slightly decreased as POG concentration was increased to 45 mol % at 32 degrees C (above Tc) whereas activity did not change with increasing concentrations of POG at 5 degrees C (below Tc). When the activity was studied as a function of temperature, at different POG concentrations, and depicted as Arrhenius plots, it was found that the activity increased with increasing temperatures, showing a discontinuity at a temperature very close to the phase transition of the system and a lower activation energy at the upper slope of the graph, indicating that the physical state of the membrane affected the interaction of PKC alpha with the membrane.


Assuntos
Isoenzimas/química , Lipídeos de Membrana/química , Proteínas de Membrana/química , Proteína Quinase C/química , Animais , Varredura Diferencial de Calorimetria , Fenômenos Químicos , Físico-Química , Diglicerídeos/química , Metabolismo Energético , Ativação Enzimática , Ressonância Magnética Nuclear Biomolecular , Fosfatidilcolinas/química , Fosfatidilserinas/química , Proteína Quinase C-alfa , Suínos , Temperatura
3.
Biochim Biophys Acta ; 1417(2): 202-10, 1999 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-10082796

RESUMO

The capacity of the antineoplastic ether lipid 1-O-octadecyl-2-O-methyl-glycero-3-phosphocholine (ET-18-OCH3) to modulate the polymorphic properties of dielaidoylphosphatidylethanolamine has been studied using biophysical techniques. Differential scanning calorimetry showed that ET-18-OCH3 depresses the onset of the Lbeta to Lalpha phase transition, decreasing also DeltaH of the transition. At the same time, the onset of the transition from Lalpha to inverted hexagonal HII phase was gradually increased as the ether lipid concentration was increased, totally disappearing at concentrations higher than 5 mol%. Small-angle X-ray diffraction and 31P-NMR confirmed that ET-18-OCH3 induced that the appearance of the inverted hexagonal HII phase was shifted towards higher temperatures completely disappearing at concentrations higher than 5 mol%. These results were used to elaborate a partial phase diagram and they were discussed as a function of the molecular action of ET-18-OCH3.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Fosfatidilcolinas/farmacologia , Fosfatidiletanolaminas/química , Varredura Diferencial de Calorimetria , Espectroscopia de Ressonância Magnética , Éteres Fosfolipídicos , Difração de Raios X
4.
Biophys J ; 76(2): 916-27, 1999 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-9929493

RESUMO

Lipid activation of protein kinase C alpha (PKC alpha) was studied by using a model mixture containing 1, 2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1, 2-dimyristoyl-sn-glycero-3-phosphoserine (DMPS), and 1, 2-dimyristoyl-sn-glycerol (1,2-DMG). This lipid mixture was physically characterized by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and 31P-nuclear magnetic resonance (31P-NMR). Based on these techniques, a phase diagram was constructed by keeping a constant DMPC/DMPS molar ratio of 4:1 and changing the concentration of 1,2-DMG. This phase diagram displayed three regions and two compounds: compound 1 (C1), with 45 mol% 1,2-DMG, and compound 2 (C2), with 60 mol% 1,2-DMG. When the phase diagram was elaborated in the presence of Ca2+ and Mg2+, at concentrations similar to those used in the PKC alpha activity assay, the boundaries between the regions changed slightly and C1 had 35 mol% 1,2-DMG. The activity of PKC alpha was studied at several temperatures and at different concentrations of 1,2-DMG, with a maximum of activity reached at 30 mol% 1,2-DMG and lower values at higher concentrations. In the presence of Ca2+ and Mg2+, maximum PKC alpha activity occurred at concentrations of 1,2-DMG that were close to the boundary in the phase diagram between region 1, where compound C1 and the pure phospholipid coexisted in the gel phase, and region 2, where compounds C1 and C2 coexisted. These results suggest that the membrane structure corresponding to a mixture of 1,2-DMG/phospholipid complex and free phospholipid is better able to support the activity of PKC alpha than the 1,2-DMG/phospholipid complex alone.


Assuntos
Membrana Celular/química , Ativação Enzimática , Isoenzimas/metabolismo , Proteína Quinase C/metabolismo , Animais , Cálcio/metabolismo , Varredura Diferencial de Calorimetria , Diglicerídeos/química , Géis/química , Magnésio/metabolismo , Espectroscopia de Ressonância Magnética , Fosfatidilserinas/química , Fosfolipídeos/química , Fosfolipídeos/farmacologia , Proteína Quinase C-alfa , Proteínas Recombinantes/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Suínos , Temperatura
5.
Biochem J ; 337 ( Pt 3): 387-95, 1999 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-9895281

RESUMO

The lipid activation of protein kinase C alpha (PKC alpha) has been studied by comparing the activation capacity of different 1, 2-diacylglycerols and 1,3-diacylglycerols incorporated into mixed micelles or vesicles. Unsaturated 1,2-diacylglycerols were, in general, more potent activators than saturated ones when 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine (POPS)/Triton X-100 mixed micelles and pure POPS vesicles were used. In contrast, these differences were not observed when 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/POPS (4:1, molar ratio) vesicles were used. Diacylglycerols bearing short fatty acyl chains showed a very high activation capacity, however, the capacity was less in mixed micelles. Furthermore, 1, 2-diacylglycerols had a considerably higher activating capacity than 1,3-diacylglycerols in POPS/Triton X-100 mixed micelles and in POPC/POPS vesicles. However, the differences between the two types of diacylglycerols were smaller when pure POPS vesicles were used. Differential scanning calorimetry (DSC) showed that POPC/POPS membrane samples containing diacylglycerols had endothermic transitions in the presence of 200 microM Ca2+ and 5 mM Mg2+. Transitions were not detected when using pure POPS vesicles due to the formation of dehydrated phases as demonstrated by FTIR (Fourier-transform infrared) spectroscopy. PKC alpha binding studies, performed by differential centrifugation in the presence of 200 microM Ca2+ and 5 mM Mg2+, showed that 1,2-sn-dioleoylglycerol (1, 2-DOG) was more effective than 1,3-dioleoylglycerol (1,3-DOG) in promoting binding to POPC/POPS vesicles. However, when pure POPS vesicles were used, PKC alpha was able to bind to membranes containing either 1,2-DOG or 1,3-DOG to the same extent.


Assuntos
Ácidos Graxos/química , Glicerol/química , Isoenzimas/química , Proteína Quinase C/química , Cálcio/química , Ativação Enzimática , Glicerol/análogos & derivados , Magnésio/química , Membranas Artificiais , Octoxinol , Fosfatidilcolinas , Fosfatidilserinas , Proteína Quinase C-alfa , Espectroscopia de Infravermelho com Transformada de Fourier , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...