Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 10(5)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37237624

RESUMO

Tumor-on-chips have become an effective resource in cancer research. However, their widespread use remains limited due to issues related to their practicality in fabrication and use. To address some of these limitations, we introduce a 3D-printed chip, which is large enough to host ~1 cm3 of tissue and fosters well-mixed conditions in the liquid niche, while still enabling the formation of the concentration profiles that occur in real tissues due to diffusive transport. We compared the mass transport performance in its rhomboidal culture chamber when empty, when filled with GelMA/alginate hydrogel microbeads, or when occupied with a monolithic piece of hydrogel with a central channel, allowing communication between the inlet and outlet. We show that our chip filled with hydrogel microspheres in the culture chamber promotes adequate mixing and enhanced distribution of culture media. In proof-of-concept pharmacological assays, we biofabricated hydrogel microspheres containing embedded Caco2 cells, which developed into microtumors. Microtumors cultured in the device developed throughout the 10-day culture showing >75% of viability. Microtumors subjected to 5-fluorouracil treatment displayed <20% cell survival and lower VEGF-A and E-cadherin expression than untreated controls. Overall, our tumor-on-chip device proved suitable for studying cancer biology and performing drug response assays.

2.
Bioact Mater ; 24: 197-235, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36606250

RESUMO

Chronic wounds have become one of the most important issues for healthcare systems and are a leading cause of death worldwide. Wound dressings are necessary to facilitate wound treatment. Engineering wound dressings may substantially reduce healing time, reduce the risk of recurrent infections, and reduce the disability and costs associated. In the path of engineering of an ideal wound dressing, hydrogels have played a leading role. Hydrogels are 3D hydrophilic polymeric structures that can provide a protective barrier, mimic the native extracellular matrix (ECM), and provide a humid environment. Due to their advantages, hydrogels (with different architectural, physical, mechanical, and biological properties) have been extensively explored as wound dressing platforms. Here we describe recent studies on hydrogels for wound healing applications with a strong focus on the interplay between the fabrication method used and the architectural, mechanical, and biological performance achieved. Moreover, we review different categories of additives which can enhance wound regeneration using 3D hydrogel dressings. Hydrogel engineering for wound healing applications promises the generation of smart solutions to solve this pressing problem, enabling key functionalities such as bacterial growth inhibition, enhanced re-epithelialization, vascularization, improved recovery of the tissue functionality, and overall, accelerated and effective wound healing.

3.
Ann Clin Lab Sci ; 52(2): 222-229, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35414501

RESUMO

OBJECTIVE: It has been demonstrated in vitro that acetylsalicylic acid (ASA) treatment halves hepatitis C virus (HCV) expression in hepatocarcinoma cells. However, the signaling pathway that promotes this ASA-induced antiviral effect has not yet been identified. AIM: The aim of this work was to identify alterations in the transcriptional profile of Huh-7-HCV-subgenomic replicon cells with vs. without ASA treatment. This comparison sheds light onto the signaling pathways and molecular mechanisms involved in the antiviral effects of ASA. METHODS: Human hepatocellular carcinoma (Huh-7) cells that express non-structural HCV proteins (Huh-7-HCV-replicon cells) were exposed to 4 mM ASA for 0, 24, 48, and 72 hours. Total RNA was isolated, and cDNA was synthesized. Transcripts were then tagged with biotin and purified. Thereafter, they were fragmented and hybridized on HG-U133 Plus 2 Gene Expression chips. Hybridization signals were captured using a GeneChip 3000 7G Scanner and analyzed via Expression Console and dChip Software. RESULTS: When exposed to ASA, hepatocarcinoma cells with non-structural HCV proteins were found to differentially regulate genes with oxidative roles in the cell. The most upregulated genes were interleukin 8 (IL-8), cytochrome P450 (CYP450), and metallothioneins (MTs), while the most downregulated genes were ribonucleotide reductases (RRs). CONCLUSION: These results show that ASA modulates the expression of genes with antioxidant functions. This suggests that ASA induces a remodeling of the antioxidant microenvironment, which may in turn interfere with the replication of HCV.


Assuntos
Hepatite C , Neoplasias Hepáticas , Antioxidantes/farmacologia , Antivirais/farmacologia , Aspirina/farmacologia , Hepacivirus/genética , Hepatite C/genética , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , RNA Viral/genética , Replicon/genética , Microambiente Tumoral , Replicação Viral/genética
4.
J BUON ; 26(4): 1210-1218, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34564972

RESUMO

PURPOSE: Metformin has been widely used for the treatment of Type 2 Diabetes Mellitus (T2DM), hyperglycemia and polycystic ovarian syndrome. Recent studies have suggested the potential of this substance as a cancer chemopreventive agent. We evaluated the antitumoral effect of iRNA-PFK-1 and the combined therapy iRNA-PFK-1 + metformin in RKO p53-positive cells. METHODS: mRNA levels of tumor suppressor genes AMPK, APC, and c-MYC, KRAS oncogenes were measured by qRT-PCR in RKO cells treated with 25 µM metformin alone or combined with iRNA-PFK-1, to evaluate the effect of both treatments. RESULTS: At 72 h after treatment with either 25 µM metformin, 150 nM iRNA-PFK-1, or the combined treatment, the transcriptional levels of these biomarkers were decreased by ~73% (p˂0.05), ~99.9%, (p˂0.01), and ~76% (p˂0.05), respectively. CONCLUSION: These in vitro results support the potential therapeutic role of metformin and PFK-1 in the treatment of colon cancer via down-modulation of the expression of several important cancer biomarkers.


Assuntos
Biomarcadores Tumorais , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Regulação para Baixo/efeitos dos fármacos , Metformina/administração & dosagem , Fosfofrutoquinase-1/administração & dosagem , Biomarcadores Tumorais/genética , Neoplasias do Colo/genética , Combinação de Medicamentos , Humanos , Fosfofrutoquinase-1/genética , RNA , Células Tumorais Cultivadas
5.
Diagnostics (Basel) ; 11(2)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578665

RESUMO

Massive worldwide serological testing for SARS-CoV-2 is needed to determine the extent of virus exposure in a particular region, the ratio of symptomatic to asymptomatic infected persons, and the duration and extent of immunity after infection. To achieve this, the development and production of reliable and cost-effective SARS-CoV-2 antigens is critical. We report the bacterial production of the peptide S-RBDN318-V510, which contains the receptor-binding domain of the SARS-CoV-2 spike protein (region of 193 amino acid residues from asparagine-318 to valine-510) of the SARS-CoV-2 spike protein. We purified this peptide using a straightforward approach involving bacterial lysis, his-tag-mediated affinity chromatography, and imidazole-assisted refolding. The antigen performances of S-RBDN318-V510 and a commercial full-length spike protein were compared in ELISAs. In direct ELISAs, where the antigen was directly bound to the ELISA surface, both antigens discriminated sera from non-exposed and exposed individuals. However, the discriminating resolution was better in ELISAs that used the full-spike antigen than the S-RBDN318-V510. Attachment of the antigens to the ELISA surface using a layer of anti-histidine antibodies gave equivalent resolution for both S-RBDN318-V510 and the full-length spike protein. Results demonstrate that ELISA-functional SARS-CoV-2 antigens can be produced in bacterial cultures, and that S-RBDN318-V510 may represent a cost-effective alternative to the use of structurally more complex antigens in serological COVID-19 testing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...