Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 8(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37870961

RESUMO

Despite being in the same pathway, mutations of KRAS and BRAF in colorectal carcinomas (CRCs) determine distinct progression courses. ZEB1 induces an epithelial-to-mesenchymal transition (EMT) and is associated with worse progression in most carcinomas. Using samples from patients with CRC, mouse models of KrasG12D and BrafV600E CRC, and a Zeb1-deficient mouse, we show that ZEB1 had opposite functions in KRAS- and BRAF-mutant CRCs. In KrasG12D CRCs, ZEB1 was correlated with a worse prognosis and a higher number of larger and undifferentiated (mesenchymal or EMT-like) tumors. Surprisingly, in BrafV600E CRC, ZEB1 was associated with better prognosis; fewer, smaller, and more differentiated (reduced EMT) primary tumors; and fewer metastases. ZEB1 was positively correlated in KRAS-mutant CRC cells and negatively in BRAF-mutant CRC cells with gene signatures for EMT, cell proliferation and survival, and ERK signaling. On a mechanistic level, ZEB1 knockdown in KRAS-mutant CRC cells increased apoptosis and reduced clonogenicity and anchorage-independent growth; the reverse occurred in BRAFV600E CRC cells. ZEB1 is associated with better prognosis and reduced EMT signature in patients harboring BRAF CRCs. These data suggest that ZEB1 can function as a tumor suppressor in BRAF-mutant CRCs, highlighting the importance of considering the KRAS/BRAF mutational background of CRCs in therapeutic strategies targeting ZEB1/EMT.


Assuntos
Carcinoma , Neoplasias Colorretais , Proteínas Proto-Oncogênicas B-raf , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Animais , Humanos , Camundongos , Neoplasias Colorretais/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
2.
Immunobiology ; 226(5): 152114, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34303919

RESUMO

The induction of major histocompatibility complex (MHC) class II proteins by interferon gamma (IFN-γ) in macrophages play an important role during immune responses. Here we explore the signaling pathways involved in the induction by IFN-γ of the MHC II transactivator (CIIta) required for MHC II transcriptional activation. Cyclophilin A (CypA) is required for IFN-γ-dependent induction of MHC II in macrophages, but not when it is mediated by GM-CSF. The effect of CypA appears to be specific because it does not affect the expression of other molecules or genes triggered by IFN-γ, such as FcγR, NOS2, Lmp2, and Tap1. We found that CypA inhibition blocked the IFN-γ-induced expression of CIIta at the transcriptional level in two phases. In an early phase, during the first 2 h of IFN-γ treatment, STAT1 is phosphorylated at Tyrosine 701 and Serine 727, residues required for the induction of the transcription factor IRF1. In a later phase, STAT1 phosphorylation and JNK activation are required to trigger CIIta expression. CypA is needed for STAT1 phosphorylation in this last phase and to bind the CIIta promoter. Our findings demonstrate that STAT1 is required in a two-step induction of CIIta, once again highlighting the significance of cross talk between signaling pathways in macrophages.


Assuntos
Interferon gama/imunologia , Proteínas Quinases JNK Ativadas por Mitógeno/imunologia , Janus Quinases/imunologia , Proteínas Nucleares/imunologia , Fator de Transcrição STAT1/imunologia , Transativadores/imunologia , Animais , Linhagem Celular , Ciclosporina/farmacologia , Lactonas/farmacologia , Camundongos Endogâmicos BALB C , Proteínas Nucleares/genética , Compostos de Espiro/farmacologia , Transativadores/genética
3.
Gut ; 66(4): 666-682, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27965283

RESUMO

OBJECTIVE: Understand the role of ZEB1 in the tumour initiation and progression beyond inducing an epithelial-to-mesenchymal transition. DESIGN: Expression of the transcription factor ZEB1 associates with a worse prognosis in most cancers, including colorectal carcinomas (CRCs). The study uses survival analysis, in vivo mouse transgenic and xenograft models, gene expression arrays, immunostaining and gene and protein regulation assays. RESULTS: The poorer survival determined by ZEB1 in CRCs depended on simultaneous high levels of the Wnt antagonist DKK1, whose expression was transcriptionally activated by ZEB1. In cancer cells with mutant TP53, ZEB1 blocked the formation of senescence-associated heterochromatin foci at the onset of senescence by triggering a new regulatory cascade that involves the subsequent activation of DKK1, mutant p53, Mdm2 and CtBP to ultimately repress macroH2A1 (H2AFY). In a transgenic mouse model of colon cancer, partial downregulation of Zeb1 was sufficient to induce H2afy and to trigger in vivo tumour senescence, thus resulting in reduced tumour load and improved survival. The capacity of ZEB1 to induce tumourigenesis in a xenograft mouse model requires the repression of H2AFY by ZEB1. Lastly, the worst survival effect of ZEB1 in patients with CRC ultimately depends on low expression of H2AFY and of senescence-associated genes. CONCLUSIONS: The tumourigenic capacity of ZEB1 depends on its inhibition of cancer cell senescence through the activation of a herein identified new molecular pathway. These results set ZEB1 as a potential target in therapeutic strategies aimed at inducing senescence.


Assuntos
Carcinogênese/genética , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Histonas/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Senescência Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Camundongos Transgênicos , Mutação , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Taxa de Sobrevida , Transcrição Gênica , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima , Via de Sinalização Wnt , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
4.
J Biol Chem ; 289(7): 4116-25, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24371144

RESUMO

Ras mutations are frequent in cancer cells where they drive proliferation and resistance to apoptosis. However in primary cells, mutant Ras instead can cause oncogene-induced senescence, a tumor suppressor function linked to repression of the polycomb factor Bmi1, which normally regulates cell cycle inhibitory cyclin-dependent kinase inhibitors (cdki). It is unclear how Ras causes repression of Bmi1 in primary cells to suppress tumor formation while inducing the gene in cancer cells to drive tumor progression. Ras also induces the EMT transcription factor ZEB1 to trigger tumor invasion and metastasis. Beyond its well-documented role in EMT, ZEB1 is important for maintaining repression of cdki. Indeed, heterozygous mutation of ZEB1 is sufficient for elevated cdki expression, leading to premature senescence of primary cells. A similar phenotype is evident with Bmi1 mutation. We show that activation of Rb1 in response to mutant Ras causes dominant repression of ZEB1 in primary cells, but loss of the Rb1 pathway is a hallmark of cancer cells and in the absence of such Rb1 repression Ras induces ZEB1 in cancer cells. ZEB1 represses miR-200 in the context of a mutual repression loop. Because miR-200 represses Bmi1, induction of ZEB1 leads to induction of Bmi1. Rb1 pathway status then dictates the opposing effects of mutant Ras on the ZEB1-miR-200 loop in primary versus cancer cells. This loop not only triggers EMT, surprisingly we show it acts downstream of Ras to regulate Bmi1 expression and thus the critical decision between oncogene-induced senescence and tumor initiation.


Assuntos
Transformação Celular Neoplásica/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , MicroRNAs/metabolismo , Neoplasias/metabolismo , Proteína Oncogênica p21(ras)/biossíntese , Complexo Repressor Polycomb 1/biossíntese , Proteínas Proto-Oncogênicas/biossíntese , RNA Neoplásico/metabolismo , Proteína do Retinoblastoma/biossíntese , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Senescência Celular/genética , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Nus , MicroRNAs/genética , Mutação , Neoplasias/genética , Neoplasias/patologia , Proteína Oncogênica p21(ras)/genética , Complexo Repressor Polycomb 1/genética , Proteínas Proto-Oncogênicas/genética , RNA Neoplásico/genética , Proteína do Retinoblastoma/genética , Fatores de Transcrição/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco
5.
Nat Commun ; 4: 2650, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24150016

RESUMO

It is thought that genomic instability precipitated by Rb1 pathway loss rapidly triggers additional cancer gene mutations, accounting for rapid tumour onset following Rb1 mutation. However, recent whole-genome sequencing of retinoblastomas demonstrated little genomic instability, but instead suggested rapid epigenetic activation of cancer genes. These results raise the possibility that loss of the Rb1 pathway, which is a hallmark of cancers, might be sufficient for cancer initiation. Yet, mutation of the Rb1 family or inactivation of the Rb1 pathway in primary cells has proven insufficient for tumour initiation. Here we demonstrate that traditional nude mouse assays impose an artificial anoikis and proliferation barrier that prevents Rb1 family mutant fibroblasts from initiating tumours. By circumventing this barrier, we show that primary fibroblasts with only an Rb1 family mutation efficiently form sarcomas in nude mice, and a Ras-ZEB1-Akt pathway then causes transition of these tumours to an invasive phenotype.


Assuntos
Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Mutação , Proteína do Retinoblastoma/genética , Sarcoma Experimental/genética , Neoplasias Cutâneas/genética , Animais , Anoikis , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Nus , Invasividade Neoplásica , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína do Retinoblastoma/metabolismo , Sarcoma Experimental/metabolismo , Sarcoma Experimental/patologia , Transdução de Sinais , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Proteínas ras/genética , Proteínas ras/metabolismo
6.
J Biol Chem ; 288(16): 11572-80, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23443660

RESUMO

Rb1 restricts cell cycle progression, and it imposes cell contact inhibition to suppress tumor outgrowth. It also triggers oncogene-induced senescence to block Ras mutation. Loss of the Rb1 pathway, which is a hallmark of cancer cells, then provides a permissive environment for Ras mutation, and Ras is sufficient for invasive tumor formation in Rb1 family mutant mouse embryo fibroblasts (MEFs). These results demonstrate that sequential mutation of the Rb1 and Ras pathways comprises a tumor initiation axis. Both Rb1 and Ras regulate expression of the transcription factor ZEB1, thereby linking tumor initiation to the subsequent invasion and metastasis, which is induced by ZEB1. ZEB1 acts in a negative feedback loop to block expression of miR-200, which is thought to facilitate tumor invasion and metastasis. However, ZEB1 also represses cyclin-dependent kinase (cdk) inhibitors to control the cell cycle; its mutation in MEFs leads to induction of these inhibitors and premature senescence. Here, we provide evidence for two sequential inductions of ZEB1 during Ras transformation of MEFs. Rb1 constitutively represses cdk inhibitors, and induction of ZEB1 when the Rb1 pathway is lost is required to maintain this repression, allowing for the classic immortalization and loss of cell contact inhibition seen when the Rb1 pathway is lost. In vivo, we show that this induction of ZEB1 is required for Ras-initiated tumor formation. ZEB1 is then further induced by Ras, beyond the level seen with Rb1 mutation, and this Ras superinduction is required to reach a threshold of ZEB1 sufficient for repression of miR-200 and tumor invasion.


Assuntos
Transformação Celular Neoplásica/metabolismo , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Mutação , Neoplasias/metabolismo , Proteína do Retinoblastoma/metabolismo , Proteínas ras/metabolismo , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Senescência Celular/genética , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação Neoplásica da Expressão Gênica/genética , Proteínas de Homeodomínio/genética , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Nus , MicroRNAs/biossíntese , MicroRNAs/genética , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias/genética , Neoplasias/patologia , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , Proteína do Retinoblastoma/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Proteínas ras/genética
7.
Mol Cell Biol ; 33(7): 1368-82, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23339872

RESUMO

Skeletal muscle development is orchestrated by the myogenic regulatory factor MyoD, whose activity is blocked in myoblasts by proteins preventing its nuclear translocation and/or binding to G/C-centered E-boxes in target genes. Recent evidence indicates that muscle gene expression is also regulated at the cis level by differential affinity for DNA between MyoD and other E-box binding proteins during myogenesis. MyoD binds to G/C-centered E-boxes, enriched in muscle differentiation genes, in myotubes but not in myoblasts. Here, we used cell-based and in vivo Drosophila, Xenopus laevis, and mouse models to show that ZEB1, a G/C-centered E-box binding transcriptional repressor, imposes a temporary stage-dependent inhibition of muscle gene expression and differentiation via CtBP-mediated transcriptional repression. We found that, contrary to MyoD, ZEB1 binds to G/C-centered E-boxes in muscle differentiation genes at the myoblast stage but not in myotubes. Its knockdown results in precocious expression of muscle differentiation genes and acceleration of myotube formation. Inhibition of muscle genes by ZEB1 occurs via transcriptional repression and involves recruitment of the CtBP corepressor. Lastly, we show that the pattern of gene expression associated with muscle differentiation is accelerated in ZEB1(-/-) mouse embryos. These results set ZEB1 as an important regulator of the temporal pattern of gene expression controlling muscle differentiation.


Assuntos
Diferenciação Celular/genética , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Fatores de Transcrição Kruppel-Like/genética , Músculo Esquelético/fisiologia , Ativação Transcricional , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Animais , Linhagem Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Elementos E-Box , Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Proteína MyoD/genética , Proteína MyoD/metabolismo , Mioblastos/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Xenopus laevis , Homeobox 1 de Ligação a E-box em Dedo de Zinco
8.
Clin Cancer Res ; 19(5): 1071-82, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23340304

RESUMO

PURPOSE: Carcinoma cells enhance their invasive capacity through dedifferentiation and dissolution of intercellular adhesions. A key activator of this process is the ZEB1 transcription factor, which is induced in invading cancer cells by canonical Wnt signaling (ß-catenin/TCF4). Tumor invasiveness also entails proteolytic remodeling of the peritumoral stroma. This study aimed to investigate the potential regulation by ZEB1 of the plasminogen proteolytic system constituted by the urokinase plasminogen activator (uPA), and its inhibitor, plasminogen activator inhibitor-1 (PAI-1). EXPERIMENTAL DESIGN: Through multiple experimental approaches, colorectal carcinoma (CRC) cell lines and samples from human primary CRC and ZEB1 (-/-) mice were used to examine ZEB1-mediated regulation of uPA and PAI-1 at the protein, mRNA, and transcriptional level. RESULTS: ZEB1 regulates uPA and PAI-1 in opposite directions: induces uPA and inhibits PAI-1. In vivo expression of uPA depends on ZEB1 as it is severely reduced in the developing intestine of ZEB1 null (-/-) mice. Optimal induction of uPA by Wnt signaling requires ZEB1 expression. ZEB1 binds to the uPA promoter and activates its transcription through a mechanism implicating the histone acetyltransferase p300. In contrast, inhibition of PAI-1 by ZEB1 does not involve transcriptional repression but rather downregulation of mRNA stability. ZEB1-mediated tumor cell migration and invasion depend on its induction of uPA. ZEB1 coexpresses with uPA in cancer cells at the invasive front of CRCs. CONCLUSIONS: ZEB1 promotes tumor invasiveness not only via induction in cancer cells of a motile dedifferentiated phenotype but also by differential regulation of genes involved in stroma remodeling.


Assuntos
Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/fisiologia , Fatores de Transcrição Kruppel-Like/fisiologia , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Animais , Western Blotting , Movimento Celular , Células Cultivadas , Imunoprecipitação da Cromatina , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Invasividade Neoplásica , Inibidor 1 de Ativador de Plasminogênio/genética , Regiões Promotoras Genéticas , Estabilidade de RNA , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica , Ativador de Plasminogênio Tipo Uroquinase/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Fatores de Transcrição de p300-CBP/genética , Fatores de Transcrição de p300-CBP/metabolismo
9.
Cell Mol Life Sci ; 69(20): 3429-56, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22945800

RESUMO

Cancer is a complex multistep process involving genetic and epigenetic changes that eventually result in the activation of oncogenic pathways and/or inactivation of tumor suppressor signals. During cancer progression, cancer cells acquire a number of hallmarks that promote tumor growth and invasion. A crucial mechanism by which carcinoma cells enhance their invasive capacity is the dissolution of intercellular adhesions and the acquisition of a more motile mesenchymal phenotype as part of an epithelial-to-mesenchymal transition (EMT). Although many transcription factors can trigger it, the full molecular reprogramming occurring during an EMT is mainly orchestrated by three major groups of transcription factors: the ZEB, Snail and Twist families. Upregulated expression of these EMT-activating transcription factors (EMT-ATFs) promotes tumor invasiveness in cell lines and xenograft mice models and has been associated with poor clinical prognosis in human cancers. Evidence accumulated in the last few years indicates that EMT-ATFs also regulate an expanding set of cancer cell capabilities beyond tumor invasion. Thus, EMT-ATFs have been shown to cooperate in oncogenic transformation, regulate cancer cell stemness, override safeguard programs against cancer like apoptosis and senescence, determine resistance to chemotherapy and promote tumor angiogenesis. This article reviews the expanding portfolio of functions played by EMT-ATFs in cancer progression.


Assuntos
Fatores Ativadores da Transcrição/metabolismo , Transformação Celular Neoplásica/patologia , Transição Epitelial-Mesenquimal , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Humanos , Camundongos , Invasividade Neoplásica
10.
Proc Natl Acad Sci U S A ; 108(48): 19204-9, 2011 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-22080605

RESUMO

In most carcinomas, invasion of malignant cells into surrounding tissues involves their molecular reprogramming as part of an epithelial-to-mesenchymal transition (EMT). Mutation of the APC gene in most colorectal carcinomas (CRCs) contributes to the nuclear translocation of the oncoprotein ß-catenin that upon binding to T-cell and lymphoid enhancer (TCF-LEF) factors triggers an EMT and a proinvasive gene expression profile. A key inducer of EMT is the ZEB1 transcription factor whose expression promotes tumorigenesis and metastasis in carcinomas. As inhibitor of the epithelial phenotype, ZEB1 is never present in the epithelium of normal colon or the tumor center of CRCs where ß-catenin remains membranous. We show here that ZEB1 is expressed by epithelial cells in intestinal tumors from human patients (familial adenomatous polyposis) and mouse models (APC(Min/+)) with germline mutations of APC that result in nuclear accumulation of ß-catenin. However, ZEB1 is not expressed in the epithelium of hereditary forms of CRCs that carry wild-type APC and where ß-catenin is excluded from the nucleus (Lynch syndrome). We found that ß-catenin/TCF4 binds directly to the ZEB1 promoter and activates its transcription. Knockdown of ß-catenin and TCF4 in APC-mutated CRC cells inhibited endogenous ZEB1, whereas forced translocation of ß-catenin to the nucleus in APC-wild-type CRC cells induced de novo expression of ZEB1. Upregulation of MT1-MMP and LAMC2 by ß-catenin/TCF4 has been linked to invasiveness in CRCs, and we show here that both proteins are activated by ZEB1 coexpressing with it in primary colorectal tumors with mutated APC. These results set ZEB1 as an effector of ß-catenin/TCF4 signaling in EMT and tumor progression.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Proteínas de Homeodomínio/metabolismo , Complexos Multiproteicos/metabolismo , Invasividade Neoplásica/fisiopatologia , Fatores de Transcrição/metabolismo , beta Catenina/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Western Blotting , Linhagem Celular , Imunoprecipitação da Cromatina , Primers do DNA/genética , Imunofluorescência , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/genética , Humanos , Imuno-Histoquímica , Camundongos , Mutagênese Sítio-Dirigida , Regiões Promotoras Genéticas/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/fisiologia , Fator de Transcrição 4 , Fatores de Transcrição/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco , beta Catenina/genética
11.
Am J Cancer Res ; 1(7): 897-912, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22016835

RESUMO

The ZEB family of transcription factors regulates key factors during embryonic development and cell differentiation but their role in cancer biology has only more recently begun to be recognized. Early evidence showed that ZEB proteins induce an epithelial-to-mesenchymal transition linking their expression with increased aggressiveness and metastasis in mice models and a wide range of primary human carcinomas. Reports over the last few years have found that ZEB proteins also play critical roles in the maintenance of cancer cell stemness, control of replicative senescence, tumor angiogenesis, overcoming of oncogenic addiction and resistance to chemotherapy. These expanding roles in tumorigenesis and tumor progression set ZEB proteins as potential diagnostic, prognostic and therapeutic targets.

12.
Biochem J ; 427(3): 541-50, 2010 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-20175752

RESUMO

BCL6 is essential for normal antibody responses and is highly expressed in germinal centre B-cells. Constitutive expression due to chromosomal translocations or mutations of cis-acting regulatory elements contributes to diffuse large B-cell lymphoma. BCL6 expression is therefore tightly regulated in a lineage- and developmental-stage-specific manner, and disruption of normal controls can contribute to lymphomagenesis. In order to discover potential cis-acting control regions we carried out DNase I-hypersensitive site mapping. Gel-shift assays and chromatin immunoprecipitation of the core region of a hypersensitive site 4.4 kb upstream of BCL6 transcription initiation (HSS-4.4) showed an E-box element-binding ZEB1 (zinc finger E-boxbinding homeobox 1) and the co-repressor CtBP (C-terminal binding protein). As compared with peripheral blood B-cells, ZEB1, a two-handed zinc finger transcriptional repressor, is expressed at relatively low levels in germinal centre cells, whereas BCL6 has the opposite pattern of expression. Transfection of ZEB1 cDNA caused a reduction in BCL6 expression and a mutated ZEB1, incapable of binding CtBP, lacked this effect. siRNA (small interfering RNA)-mediated knockdown of ZEB1 or CtBP produced an increase in BCL6 mRNA. We propose that HSS-4.4 is a distal promoter element binding a repressive complex consisting of ZEB1 and CtBP. CtBP is ubiquitously expressed and the results of the present study suggest that regulation of ZEB1 is required for control of BCL6 expression.


Assuntos
Oxirredutases do Álcool/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Oxirredutases do Álcool/genética , Sequência de Bases , Linhagem Celular , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Proteínas de Homeodomínio/genética , Humanos , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , Proteínas Proto-Oncogênicas c-bcl-6 , RNA Interferente Pequeno , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/genética , Sítio de Iniciação de Transcrição , Homeobox 1 de Ligação a E-box em Dedo de Zinco
13.
Eur J Immunol ; 39(7): 1902-13, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19585511

RESUMO

MAPK phosphatase-1 (MKP-1) is a protein phosphatase that plays a crucial role in innate immunity. This phosphatase inactivates ERK1/2, which are involved in two opposite functional activities of the macrophage, namely proliferation and activation. Here we found that although macrophage proliferation and activation induce MKP-1 with different kinetics, gene expression is mediated by the proximal promoter sequences localized between -380 and -180 bp. Mutagenesis experiments of the proximal element determined that CRE/AP-1 is required for LPS- or M-CSF-induced activation of the MKP-1 gene. Moreover, the results from gel shift analysis and chromatin immunoprecipitation indicated that c-Jun and CREB bind to the CRE/AP-1 box. The distinct kinetics shown by M-CSF and LPS correlates with the induction of JNK and c-jun, as well as the requirement for Raf-1. The signal transduction pathways that activate the induction of MKP-1 correlate kinetically with induction by M-CSF and LPS.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Fosfatase 1 de Especificidade Dupla/genética , Lipopolissacarídeos/farmacologia , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/efeitos dos fármacos , Fator de Transcrição AP-1/metabolismo , Animais , Sítios de Ligação , Western Blotting , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Proliferação de Células/efeitos dos fármacos , Imunoprecipitação da Cromatina , Fosfatase 1 de Especificidade Dupla/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Expressão Gênica/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Cinética , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Ligação Proteica , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteínas Proto-Oncogênicas c-raf/genética , Proteínas Proto-Oncogênicas c-raf/metabolismo , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
14.
ACS Nano ; 3(6): 1335-44, 2009 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-19489561

RESUMO

Murine bone marrow macrophages were able to recognize gold nanoparticle peptide conjugates, while peptides or nanoparticles alone were not recognized. Consequently, in the presence of conjugates, macrophage proliferation was stopped and pro-inflammatory cytokines such as TNF-alpha, IL-1beta, and IL-6, as well as nitric oxide synthase (NOS2) were induced. Furthermore, macrophage activation by gold nanoparticles conjugated to different peptides appeared to be rather independent of peptide length and polarity, but dependent on peptide pattern at the nanoparticle surface. Correspondingly, the biochemical type of response also depended on the type of conjugated peptide and could be correlated with the degree of ordering in the peptide coating. These findings help to illustrate the basic requirements involved in medical nanoparticle conjugate design to either activate the immune system or hide from it in order to reach their targets before being removed by phagocytes.


Assuntos
Ouro/química , Macrófagos/citologia , Nanopartículas Metálicas , Peptídeos/química , Citocinas/metabolismo , Macrófagos/metabolismo
15.
Mol Immunol ; 46(4): 743-8, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18996597

RESUMO

Macrophages that react against pathogenic organisms can also be activated with artificial nanometric units consisting of gold nanoparticles (Au NPs) with a peptide coating. Using bone marrow-derived macrophages, here we show that these cells have the capacity to recognize Au NPs once conjugated to two biomedically relevant peptides, the amyloid growth inhibitory peptide (AGIP) and the sweet arrow peptide (SAP), while they do not recognize peptides or NPs alone. The recognition of these conjugates by macrophages is mediated by a pattern recognition receptor, the TLR-4. Consequently, pro-inflammatory cytokines such as TNF-alpha, IL-1 beta and IL-6, as well as nitric oxide synthase were induced and macrophage proliferation was stopped when exposed to the peptide-conjugated Au NPs. Contamination by lipopolysaccharide in our experimental system was excluded. Furthermore, macrophage activation appeared to be independent of peptide length and polarity. As a result of macrophage activation, conjugated Au NPs were internalized and processed. These results open up a new avenue in the world of adjuvants and illustrate the basic requirements for the design of NP conjugates that efficiently reach their target.


Assuntos
Ouro/farmacologia , Ativação de Macrófagos , Macrófagos/efeitos dos fármacos , Nanopartículas Metálicas , Peptídeos/farmacologia , Adjuvantes Imunológicos , Animais , Proliferação de Células/efeitos dos fármacos , Ouro/metabolismo , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Microscopia Eletrônica de Transmissão , Peptídeos/metabolismo , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo
16.
Blood ; 112(8): 3274-82, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18682602

RESUMO

Macrophages have the capacity to proliferate in response to specific growth factors, such as macrophage-colony stimulating factor (M-CSF). In the presence of several cytokines and activating factors, macrophages undergo growth arrest, become activated, and participate in the development of an immune response. We have previously observed that activation of extracellularly regulated kinase 1/2 (ERK-1/2) is required for macrophage proliferation in response to growth factors. A short and early pattern of ERK activity correlated with the proliferative response. In contrast, slightly prolonged patterns of activity of these kinases were induced by signals that lead to macrophage activation and growth arrest. IFN-gamma is the main endogenous Th1-type macrophage activator. Here we report that stimulation with IFN-gamma prolongs the pattern of ERK activity induced by M-CSF in macrophages. These effects correlate with IFN-gamma-mediated inhibition of the expression of several members of the MAPK phosphatase family, namely MKP-1, -2, and -4. Moreover, inhibition of MKP-1 expression using siRNA technology or synthetic inhibitors also led to elongated ERK activity and significant blockage of M-CSF-dependent proliferation. These data suggest that subtle changes in the time course of activity of members of the MAPK family contribute to the antiproliferative effects of IFN-gamma in macrophages.


Assuntos
Fosfatase 1 de Especificidade Dupla/biossíntese , Regulação Enzimológica da Expressão Gênica , Interferon gama/metabolismo , Sistema de Sinalização das MAP Quinases , Macrófagos/enzimologia , Animais , Células da Medula Óssea/citologia , Proteínas de Ciclo Celular , Proliferação de Células , Ativação de Macrófagos , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Fenótipo , Transdução de Sinais
17.
J Immunol ; 180(7): 4523-9, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18354174

RESUMO

Macrophages perform essential functions in the infection and resolution of inflammation. IFN-gamma is the main endogenous macrophage Th1 type activator. The classical IFN-gamma signaling pathway involves activation of Stat-1. However, IFN-gamma has also the capability to activate members of the MAPK family. In primary bone marrow-derived macrophages, we have observed strong activation of p38 at early time points of IFN-gamma stimulation, whereas weak activation of ERK-1/2 and JNK-1 was detected at a more delayed stage. In parallel, IFN-gamma exerted repressive effects on the expression of a number of MAPK phosphatases. By using selective inhibitors and knockout models, we have explored the contributions of MAPK activation to the macrophage response to IFN-gamma. Our findings indicate that these kinases regulate IFN-gamma-mediated gene expression in a rather selective way: p38 participates mainly in the regulation of the expression of genes required for the innate immune response, including chemokines such as CCL5, CXCL9, and CXCL10; cytokines such as TNF-alpha; and inducible NO synthase, whereas JNK-1 acts on genes involved in Ag presentation, including CIITA and genes encoding MHC class II molecules. Modest effects were observed for ERK-1/2 in these studies. Interestingly, some of the MAPK-dependent changes in gene expression observed in these studies are based on posttranscriptional regulation of mRNA stability.


Assuntos
Interferon gama/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Animais , Células Cultivadas , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/genética , Fosfosserina/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Estabilidade de RNA/efeitos dos fármacos , Fator de Transcrição STAT1/metabolismo
18.
Structure ; 15(4): 473-83, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17437719

RESUMO

In this work, we study the role of phosphorylation as a regulatory mechanism for the interaction between the E3 ubiquitin ligase ItchWW3 domain and two PPxY motifs of one of its targets, the Epstein-Barr virus latent membrane protein 2A. Whereas ligand phosphorylation only diminishes binding, domain phosphorylation at residue T30 abrogates it. We show that two ItchWW domains can be phosphorylated at this position, using CK2 and PKA kinases and/or with stimulated T lymphocyte lysates. To better understand the regulation process, we determined the NMR structures of the ItchWW3-PPxY complex and of the phosphoT30-ItchWW3 variant. The peptide binds the domain using both XP and tyrosine grooves. A hydrogen bond from T30 to the ligand is also detected. This hydrogen-bond formation is precluded in the variant, explaining the inhibition upon phosphorylation. Our results suggest that phosphorylation at position 30 in ItchWW domains can be a mechanism to inhibit target recognition in vivo.


Assuntos
Espectroscopia de Ressonância Magnética , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Proteínas da Matriz Viral/metabolismo , Animais , Ligantes , Camundongos , Fosforilação , Estrutura Terciária de Proteína
19.
J Biol Chem ; 282(17): 12566-73, 2007 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-17337450

RESUMO

Macrophages proliferate in the presence of their growth factor, macrophage colony-stimulating factor (M-CSF), in a process that is dependent on early and short ERK activation. Lipopolysaccharide (LPS) induces macrophage activation, stops proliferation, and delays ERK phosphorylation, thereby triggering an inflammatory response. Proliferating or activating responses are balanced by the kinetics of ERK phosphorylation, the inactivation of which correlates with Mkp1 induction. Here we show that the transcriptional induction of this phosphatase by M-CSF or LPS depends on JNK but not on the other MAPKs, ERK and p38. The lack of Mkp1 induction caused by JNK inhibition prolonged ERK-1/2 and p38 phosphorylation. The two JNK genes, jnk1 and jnk2, are constitutively expressed in macrophages. However, only the JNK1 isoform was phosphorylated and, as determined in single knock-out mice, was necessary for Mkp1 induction by M-CSF or LPS. JNK1 was also required for pro-inflammatory cytokine biosynthesis (tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6) and LPS-induced NO production. This requirement is independent of Mkp1 expression, as shown in Mkp1 knock-out mice. Our results demonstrate a critical role for JNK1 in the regulation of Mkp1 induction and in LPS-dependent macrophage activation.


Assuntos
Proteínas de Ciclo Celular/biossíntese , Proteínas Imediatamente Precoces/biossíntese , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases/fisiologia , Ativação de Macrófagos/fisiologia , Macrófagos/enzimologia , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Fosfoproteínas Fosfatases/biossíntese , Proteínas Tirosina Fosfatases/biossíntese , Animais , Células Cultivadas , Citocinas/biossíntese , Fosfatase 1 de Especificidade Dupla , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Óxido Nítrico/metabolismo , Fosfoproteínas Fosfatases/deficiência , Proteína Fosfatase 1
20.
Biochem Biophys Res Commun ; 352(4): 913-8, 2007 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-17157812

RESUMO

Voltage-dependent K(+) (Kv) channels are involved in the immune response. Kv1.3 is highly expressed in activated macrophages and T-effector memory cells of autoimmune disease patients. Macrophages are actively involved in T-cell activation by cytokine production and antigen presentation. However, unlike T-cells, macrophages express Kv1.5, which is resistant to Kv1.3-drugs. We demonstrate that mononuclear phagocytes express different Kv1.3/Kv1.5 ratios, leading to biophysically and pharmacologically distinct channels. Therefore, Kv1.3-based treatments to alter physiological responses, such as proliferation and activation, are impaired by Kv1.5 expression. The presence of Kv1.5 in the macrophagic lineage should be taken into account when designing Kv1.3-based therapies.


Assuntos
Canal de Potássio Kv1.3/metabolismo , Canal de Potássio Kv1.5/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Animais , Fenômenos Biofísicos , Biofísica , Células Cultivadas , Camundongos , Venenos de Escorpião/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...