Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 52(40): 14453-14464, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37772605

RESUMO

In this work, CuOx (x = 1 and 2) nanostructures have been synthesized by electrochemical anodization in ethylene glycol based electrolytes using oxalic acid or NaF (with or without NaOH) as complexing agents. The influence of hydrodynamic conditions and time during anodization of copper have also been evaluated. A comprehensive morphological, structural, electrochemical and photoelectrochemical characterization of the nanostructures has been performed. The results revealed the convenient use of oxalic acid and 250 rpm for 5 minutes during electrochemical anodization to obtain homogeneous CuOx nanostructures formed by spheres with Cu2O as a predominant phase. Using this nanostructure as a photocathode for N2O photoelectron-reduction, almost 100% of N2O removal was achieved after 1 h, showing the improvement of the photoelectrochemical approach vs. the photo or the electro performance.

2.
Chemosphere ; 246: 125677, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31884230

RESUMO

In this study, WO3 nanostructures were synthesized by the electrochemical anodization technique to use them on the degradation of persistent organic compounds such as the pesticide fenamiphos. The acids electrolyte used during the anodization were two different: 1.5 M H2SO4 - 0.05 M H2O2 and 1.5 M CH4O3S - 0.05 M H2O2. Once the samples have been manufactured, they have been subjected to different tests to analyze the properties of the nanostructures. With Field Emission Scanning Electron Microscopy (FE-SEM) the samples have been examined morphologically, their composition and crystallinity has been studied through Raman Spectroscopy and their photoelectrochemical behaviour by Photoelectrochemical Impedance Spectroscopy (PEIS). Finally, degradation tests have been carried out using the technique known as photoelectrocatalysis (PEC). The conditions that were applied in this technique were a potential of 1 VAg/AgCl and simulated solar illumination. The degradation process was monitored by UV-Visible and High-Performance liquid Chromatography (HPLC) to control the course of the experiment. The nanostructures obtained with 1.5 M CH4O3S - 0.05 M H2O2 electrolyte showed a better photoelectrochemical behaviour than nanostructures synthesized with 1.5 M H2SO4 - 0.05 M H2O2. The fenamiphos degradation was achieved at 2 h of experiment and the intermediate formation was noticed at 1 h of PEC experiment.


Assuntos
Nanotubos/química , Compostos Organofosforados/química , Óxidos/química , Praguicidas/química , Tungstênio/química , Eletrólitos , Peróxido de Hidrogênio , Microscopia Eletrônica de Varredura , Modelos Químicos , Nanoestruturas/química , Processos Fotoquímicos , Luz Solar
3.
Sci Total Environ ; 674: 88-95, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31004907

RESUMO

A photoelectrocatalyst consisting of WO3 nanosheets or nanorods has been synthesized by electrochemical anodization under hydrodynamic conditions, and has been used for the degradation of two toxic pesticides: chlorfenvinphos and bromacil. Nanostructures have been characterized by FESEM and Raman spectroscopy. Photoelectrochemical degradation tests have been carried out both for individual pesticide solutions and for a mixture solution, and the concentration evolution with time has been followed by UV-Vis spectrophotometry. For individual pesticides, pseudo-first order kinetic coefficients of 0.402h-1 and 0.324h-1 have been obtained for chlorfenvinphos and bromacil, respectively, while for the mixture solution, these kinetic coefficients have been 0.162h-1 and 0.408h-1. The change in behavior towards pesticide degradation depending on whether individual or mixture solutions were used might be indicative of a competitive process between the two pesticide molecules when interacting with the WO3 nanostructures surface or when approaching the semiconductor/electrolyte interface.

4.
J Environ Manage ; 226: 249-255, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30121460

RESUMO

The degradation of pesticide diuron has been explored by photoelectrocatalysis (PEC) under visible light illumination using two different WO3 nanostructures, obtained by anodization of tungsten. The highest degradation efficiency (73%) was obtained for WO3 nanosheets synthesized in the presence of small amounts of hydrogen peroxide (0.05 M). For that nanostructure, the kinetic coefficient for diuron degradation was 133% higher than that for the other nanostructure (anodized in the presence of fluoride anions). These results have been explained by taking into account the different architecture and dimensions of the two WO3 nanostructures under study.


Assuntos
Diurona/química , Luz , Nanoestruturas , Diurona/isolamento & purificação , Óxidos , Tungstênio
5.
J Environ Manage ; 143: 71-9, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24879048

RESUMO

A stabilization/solidification (S/S) process by using cement was applied to tannery sludge in order to find a safer way of landfilling this waste. The effects of three parameters on the process effectiveness were analysed in terms of leachate toxicity and chromium retention (%). The parameters studied were the relative amount of added water (30-50 wt.%), cement (10-60 wt.% in the solid components), and the use of three different types of cement (clinker with additions of limestone, with additions of limestone and fly ashes, and with additions of pozzolans). Statistical analysis performed by variance analysis and categorical multifactorial tests reveals that all the studied parameters significantly influence the effectiveness of the process. Results showed that chromium retention decreases as the relative amount of cement and water increases, probably due to additional chromium provided by cement and increased in the porosity of the mixtures. Leachate toxicity showed the same minimum value for mixtures with 30% or 40% cement, depending on the type of cement, showing that clinker is the main material responsible for the process effectiveness, and additives (pozzolans or fly ashes) do not improve it. The volume increase is lower as less sludge is replaced by cement and the relative amount of water decreases, and for the cement without additions of fly ashes or pozzolans. Therefore, the latter seems to be the most appropriate cement in spite of being more expensive. This is due to the fact that the minimum toxicity value is achieved with a lower amount of cement; and moreover, the volume increase in the mixtures is lower, minimizing the disposal cost to a landfill.


Assuntos
Cromo/química , Resíduos Industriais , Esgotos , Gerenciamento de Resíduos/métodos , Carbonato de Cálcio , Cromo/toxicidade , Cinza de Carvão , Poluentes Ambientais , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...