Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38050403

RESUMO

In early April of 2018 we sampled asymptomatic autumn flowering Crocus plants (Fig. S1.) in a private collection in Hajdú-Bihar county, Hungary. From each species (Cr. kotschyanus subsp. kotschyanus, Cr. sativus, Cr. speciosus) 200 mg leaf sample was collected from 5 neighboring shoot, which were treated as one sample. ELISA tests were carried out in duplicates using potyvirus-specific MAb PTY1 antibodies (Jordan and Hammond 1991) on the samples (Agdia, Elkhart, IN, USA). A sample was considered positive if the absorbance was at least three times greater than that of the negative control. Only one sample tested positive; the absorbance values of Cr. sativus leaves were 0.013 and 0.014, while the negative controls were 0.002 and 0.003, respectively. The samples were further tested by RT-PCR for potyviruses (Salamon and Palkovics 2005), tomato spotted wilt virus (TSWV) (Nemes and Salánki 2020) and nepovirus subgroup A (Digiaro et al. 2007). Total nucleic acid was extracted with the phenol-chloroform method of White and Kaper (1989), and reverse transcription was carried out with Maxima H Minus First Strand cDNA Synthesis Kit (Thermo Fisher Scientific Baltics UAB, Vilnius, Lithuania) using random hexamer primer. The samples were negative for TSWV and nepovirus subgroup A, but a single PCR product of ~ 1700 nucleotide (nt) was amplified with potyvirus specific primers and cloned into pGEM®-T Easy vector (Promega, Madison, WI, USA). The 1726 nt long insert sequence, including the complete coat protein region was determined and deposited in the NCBI GenBank database (Accession No: OR425160). Digestion of the original PCR products with restriction enzyme SacI yielded only the predicted restriction fragments (364 / 1362 bp), indicating the presence of only a single potyvirus in the infected sample. BLASTn analysis of the CP cistron revealed the highest nt identities to saffron latent virus (SaLV) Iranian isolates (GenBank AccNo.: MN990394 - 85.44%, MN990415 - 85.39% and RefSeq: NC_036802 - 84.05%). For phylogenetic analyses MEGA11 (Tamura et al. 2021) was used. The resulting Maximum Likelihood tree (Fig. S2) showed that all Iranian SaLV isolates grouped together, while the Hungarian isolate is on an adjacent branch, separate from other virus species, and supported with 100% bootstrap values. From these results, it appears that the Hungarian isolate has been separated from the Iranian clade, and has evolved separately as a distinct lineage. We were unable to fulfill Koch's postulates as all available Crocus sativus plants were infected with SaLV. Latent potyvirus infection of Crocus species, by bean yellow mosaic virus (BYMV), iris mild mosaic virus (IMMV), iris severe mosaic virus (ISMV) and turnip mosaic virus (TuMV) has been reported by Grilli Caiola and Faoro (2011). SaLV was first reported from Iran (Parizad et al. 2017), but to our knowledge has never been reported from Europe or from any current EPPO member state. Since Crocus species can be asymptomatic virus reservoirs, it is important that any certification scheme for production should require laboratory tests to prove the health of the plants; or advise growers to keep possible high value susceptible crops such as breeding material and nuclear stocks at a distance from crocuses to mitigate virus transmission between stocks. It is also advisable to grow infected lots far from healthy stocks and protected wild hosts. To our knowledge, this is the first report of SaLV from Hungary and from Europe.

2.
Plant Dis ; 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36320137

RESUMO

In mid-April of 2018 light green to greenish yellow linear stripes (Fig. S1.) were observed on the foliage of meadow saffron (Colchicum autumnale) plants - which are native to Hungary - at a strictly protected Natura2000 site maintained by the Duna-Ipoly National Park (DNPI). By autumn, during the flowering season, flower breaking symptoms (Fig. S2.) were noticed, which indicated possible viral infection. With the permit of the Government Office of Pest County and the DNPI, 200 mg leaf sample was collected from one symptomatic plant in spring 2021 and stored at -70 °C until further processing. At the time of the sampling about 2.5 % of the ~ 5000 meadow saffron were symptomatic. Multiplex RT-PCR testing of the sample and an asymptomatic C. autumnale plant for cucumber mosaic virus, tomato spotted wilt virus (Nemes and Salánki 2020) and Nepovirus subgroup-A (Digiaro et al. 2007) gave negative results. The asymptomatic plant also tested negative for potyviruses (Salamon and Palkovics 2005). The asymptomatic (healthy) C. autumnale plant was inoculated with leaf sap of the sample (0.02M Sörensen's phosphate buffer pH 7.2 + 2 % PVP-40 (m/v)) resulting in symptoms of flower breaking in autumn of 2021, and linear stripes on the foliage in spring 2022, identical to symptoms on the originally infected plant. ELISA tests were carried out on the source plants in duplicate using potyvirus-specific MAb PTY1 antibodies (Jordan and Hammond 1991) (Agdia, Elkhart, IN, USA). Absorbance values were 1.519 and 1.530, while the negative controls were 0.003 and 0.007, respectively indicating potyvirus infection of the sample. Molecular tests were carried out on the source and inoculated plant samples in 2022. Total nucleic acid was extracted with the modified CTAB protocol of Xu et al. (2004), and reverse transcription was carried out with Maxima H Minus First Strand cDNA Synthesis Kit (Thermo Fisher Scientific Baltics UAB, Vilnius, Lithuania) with poly T2 (5'-CGGGGATCCTCGAGAAGCTTTTTTTTTTTTTTTTT-3') primer (Salamon and Palkovics 2005). PCR amplification was carried out with poty7941 (5'-GGAATTCCCGCGGNAAYAAYAGYGGNCARCC-3') and poly T2 primers as described earlier (Salamon and Palkovics 2005). A PCR product of ~ 1.6 kb was obtained in each case (Fig. S3.), cloned into pGEM®-T Easy vector (Promega, Madison, WI, USA) and transformed into E. coli DH5α strain. The obtained 1642 nucleotide (nt) sequence encompassing the complete coat protein (CP) was determined (Accession No: OP057214). The virus sequence present in the source and inoculated plants shared 100% nt identity. EcoRV digestion of the PCR products yielded two restriction fragments (369/1273 bp), indicating the presence of a single potyvirus in the infected plant tissue (Fig. S3.). BLASTN analysis of the CP cistron revealed highest nt identity (93.91 %) to meadow saffron breaking virus (MSBV) isolate FR GenBank Acc. No.: AY388995. MSBV was first reported in the Alsace region of France at an INRA research station in cultivated meadow saffron plants showing similar symptoms and the disease reached 100% incidence within a year (Poutaraud et al. 2004). Potyviruses are transmitted mechanically and by aphids (Inoue-Nagata et al. 2022). The spread of MSBV could lead to the infection and decline of the population of Colchicum in protected ecosystems. To our knowledge, this is the first report of MSBV on wild meadow saffron plant from a strictly protected Natura2000 site at a Hungarian National Park.

3.
Viruses ; 13(2)2021 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-33572676

RESUMO

Cucumber mosaic virus (CMV, Cucumovirus, Bromoviridae) is an economically significant virus infecting important horticultural and field crops. Current knowledge regarding the specific functions of its movement protein (MP) is still incomplete. In the present study, potential post-translational modification sites of its MP were assayed with mutant viruses: MP/S28A, MP/S28D, MP/S120A and MP/S120D. Ser28 was identified as an important factor in viral pathogenicity on Nicotiana tabacum cv. Xanthi, Cucumis sativus and Chenopodium murale. The subcellular localization of GFP-tagged movement proteins was determined with confocal laser-scanning microscopy. The wild type movement protein fused to green fluorescent protein (GFP) (MP-eGFP) greatly colocalized with callose at plasmodesmata, while MP/S28A-eGFP and MP/S28D-eGFP were detected as punctate spots along the cell membrane without callose colocalization. These results underline the importance of phosphorylatable amino acids in symptom formation and provide data regarding the essential factors for plasmodesmata localization of CMV MP.


Assuntos
Cucumovirus/metabolismo , Nicotiana/virologia , Doenças das Plantas/virologia , Proteínas do Movimento Viral em Plantas/química , Proteínas do Movimento Viral em Plantas/metabolismo , Plasmodesmos/virologia , Motivos de Aminoácidos , Cucumovirus/química , Cucumovirus/genética , Proteínas do Movimento Viral em Plantas/genética
4.
Sci Rep ; 7(1): 13444, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-29044170

RESUMO

The 2b protein of Cucumber mosaic virus has a role in nearly all steps of the viral cycle including cell-to-cell movement, symptom induction and suppression of antiviral RNA silencing. Previous studies demonstrated the presence of 2b protein in the nucleus and in cytoplasm as well. Phosphorylation site of 2b protein is conserved in all CMV isolates, including proposed constitute motifs for casein kinase II and cyclin-dependent kinase 2. To discern the impact of 2b protein phosphorylation, we created eight different mutants to mimic the non-phosporylated (serine to alanine) as well as the phosphorylated state (serine to aspartic acid) of the protein. We compared these mutants to the wild-type (Rs-CMV) virus in terms of symptom induction, gene silencing suppressor activity as well as in cellular localization. Here, in this study we confirmed the phosphorylation of 2b protein in vivo, both in infected N. benthamiana and in infiltrated patches. Mutants containing aspartic acid in the phosphorylation site accumulated only in the cytoplasm indicating that phosphorylated 2b protein could not enter the nucleus. We identified a conserved dual phosphorylation switch in CMV 2b protein, which equilibrates the shuttling of the 2b protein between the nucleus and the cytoplasm, and regulates the suppressor activity of the 2b protein.


Assuntos
Cucumovirus/fisiologia , Proteínas Virais/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Inativação Gênica , Espaço Intracelular , Mutação , Fenótipo , Fosforilação , Doenças das Plantas/virologia , Transporte Proteico , Nicotiana/virologia , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...