Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 26(13): 3458-3471, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28345264

RESUMO

We assembled the great snipe blood transcriptome using data from fourteen lekking males, in order to de novo identify candidate genes related to sexual selection, and determined the expression profiles in relation to mating success. The three most highly transcribed genes were encoding different haemoglobin subunits. All tended to be overexpressed in males with high mating success. We also called single nucleotide polymorphisms (SNPs) from the transcriptome data and found considerable genetic variation for many genes expressed during lekking. Among these, we identified 14 polymorphic candidate SNPs that had a significant genotypic association with mating success (number of females mated with) and/or mating status (mated or not). Four of the candidate SNPs were found in HBAA (encoding the haemoglobin α-chain). Heterozygotes for one of these and one SNP in the gene PABPC1 appeared to enjoy higher mating success compared to males homozygous for either of the alleles. In a larger data set of individuals, we genotyped 38 of the identified SNPs but found low support for consistent selection as only one of the zygosities of previously identified candidate SNPs and none of their genotypes were associated with mating status. However, candidate SNPs generally showed lower levels of spatial genetic structure compared to noncandidate markers. We also scored the prevalence of avian malaria in a subsample of birds. Males infected with avian malaria parasites had lower mating success in the year of sampling than noninfected males. Parasite infection and its interaction with specific genes may thus affect performance on the lek.


Assuntos
Charadriiformes/sangue , Charadriiformes/genética , Reprodução , Transcriptoma , Alelos , Animais , Feminino , Variação Genética , Genótipo , Masculino , Polimorfismo de Nucleotídeo Único , Comportamento Sexual Animal
2.
Genome Res ; 25(11): 1656-65, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26355005

RESUMO

Speciation is a continuous process during which genetic changes gradually accumulate in the genomes of diverging species. Recent studies have documented highly heterogeneous differentiation landscapes, with distinct regions of elevated differentiation ("differentiation islands") widespread across genomes. However, it remains unclear which processes drive the evolution of differentiation islands; how the differentiation landscape evolves as speciation advances; and ultimately, how differentiation islands are related to speciation. Here, we addressed these questions based on population genetic analyses of 200 resequenced genomes from 10 populations of four Ficedula flycatcher sister species. We show that a heterogeneous differentiation landscape starts emerging among populations within species, and differentiation islands evolve recurrently in the very same genomic regions among independent lineages. Contrary to expectations from models that interpret differentiation islands as genomic regions involved in reproductive isolation that are shielded from gene flow, patterns of sequence divergence (d(xy) and relative node depth) do not support a major role of gene flow in the evolution of the differentiation landscape in these species. Instead, as predicted by models of linked selection, genome-wide variation in diversity and differentiation can be explained by variation in recombination rate and the density of targets for selection. We thus conclude that the heterogeneous landscape of differentiation in Ficedula flycatchers evolves mainly as the result of background selection and selective sweeps in genomic regions of low recombination. Our results emphasize the necessity of incorporating linked selection as a null model to identify genome regions involved in adaptation and speciation.


Assuntos
Especiação Genética , Passeriformes/classificação , Passeriformes/genética , Recombinação Genética , Seleção Genética , Animais , Feminino , Fluxo Gênico , Genética Populacional , Genoma , Genômica , Técnicas de Genotipagem , Masculino , Polimorfismo de Nucleotídeo Único , Isolamento Reprodutivo , Análise de Sequência de DNA , Especificidade da Espécie
3.
Nat Commun ; 6: 7330, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26040272

RESUMO

The typically repetitive nature of the sex-limited chromosome means that it is often excluded from or poorly covered in genome assemblies, hindering studies of evolutionary and population genomic processes in non-recombining chromosomes. Here, we present a draft assembly of the non-recombining region of the collared flycatcher W chromosome, containing 46 genes without evidence of female-specific functional differentiation. Survival of genes during W chromosome degeneration has been highly non-random and expression data suggest that this can be attributed to selection for maintaining gene dose and ancestral expression levels of essential genes. Re-sequencing of large population samples revealed dramatically reduced levels of within-species diversity and elevated rates of between-species differentiation (lineage sorting), consistent with low effective population size. Concordance between W chromosome and mitochondrial DNA phylogenetic trees demonstrates evolutionary stable matrilineal inheritance of this nuclear-cytonuclear pair of chromosomes. Our results show both commonalities and differences between W chromosome and Y chromosome evolution.


Assuntos
Aves/genética , DNA Mitocondrial/genética , Evolução Molecular , Répteis/genética , Cromossomos Sexuais/genética , Animais , Galinhas/genética , Feminino , Tentilhões/genética , Lagartos/genética , Filogenia , Aves Canoras/genética , Struthioniformes/genética , Tartarugas/genética
4.
Mol Ecol ; 19(6): 1091-106, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20163542

RESUMO

Birds have for long been popular study objects in speciation research. Being easy to observe in the field, they have traditionally been particularly important in studies of behavioural and ecological factors in speciation, whereas the genetic aspects of the process have been studied in other organisms, such as Drosophila. More recently, however, a stronger genetic focus has been placed on speciation research also in birds. Here, we review ecological, behavioural and genetic studies on speciation in the pied flycatcher (Ficedula hypoleuca) and the collared flycatcher (Ficedula albicollis). These well-studied birds provide among the few proposed examples of the process of reinforcement of premating isolation, and the evidence for reinforcement is strong. They are further characterized by having strong intrinsic postzygotic barriers (female hybrid sterility), yet the two species appear to be very similar ecologically. This is in stark contrast to another well-studied bird complex, Darwin's finches, in which the species differ vastly in ecologically important traits but have no developmental problems arising from genetic incompatibilities, and where no evidence for reinforcement is found. In the flycatchers, sex chromosome linkage of genes affecting traits associated with both pre- and postzygotic barriers to gene exchange is likely to facilitate reinforcement. We discuss whether such sex-linkage may be common in birds. The contrast between flycatchers and Darwin's finches indicate that speciation in birds cannot always be understood mainly as a result of divergent natural selection ('ecological speciation'), and generalizations from one system may lead us astray. We discuss to what extent insight from research on the flycatchers may point to fruitful avenues for future research on bird speciation and specifically call for a more systematic effort to simultaneously investigate ecology, behaviour and genetics of birds caught in the process of speciation.


Assuntos
Especiação Genética , Seleção Genética , Aves Canoras/genética , Animais , Meio Ambiente , Europa (Continente) , Evolução Molecular , Feminino , Fluxo Gênico , Genética Populacional , Hibridização Genética , Masculino , Filogenia , Cromossomos Sexuais , Comportamento Sexual Animal
5.
Genetica ; 138(4): 453-61, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19052880

RESUMO

Signatures of balancing selection are often found when investigating the extremely polymorphic regions of major histocompatibility complex (MHC) genes, and it is generally accepted that selective forces maintain this polymorphism. However, the exact nature of the selection is controversial. Theoretical studies have mainly focused on overdominance and/or frequency dependent selection while laboratory studies have emphasised the role of mate choice. Empirical field data, on the other hand, have been relatively scarce. Previously we have found that geographic structure in MHC class II genes of the Great Snipe (Gallinago media) is too pronounced to be explained by neutral forces alone. Here we test the hypothesis that sexual selection on MHC alleles may be influencing this geographic structure between mountain and lowland populations. We found evidence of balancing selection acting on MHC genes in the form of a higher rate of amino-acid changing substitutions compared to silent substitutions in the peptide binding regions. Not only natural selection but also sexual selection may influence MHC polymorphism in this bird because certain MHC alleles have been found to be associated with higher male mating success. Contrary to predictions from negative frequency dependent selection, males carrying locally rare alleles did not have a mating advantage. Instead, the mating success of alleles in a mountain population was positively correlated to their relative frequency in the mountains compared to the lowlands, implying that locally adapted MHC alleles may also be favoured by sexual selection.


Assuntos
Charadriiformes/genética , Complexo Principal de Histocompatibilidade/genética , Preferência de Acasalamento Animal , Seleção Genética , Alelos , Animais , Variação Genética , Genética Populacional , Genótipo , Geografia , Masculino , Polimorfismo Genético
6.
J Anim Ecol ; 76(4): 740-9, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17584380

RESUMO

1. During the last centuries, the breeding range of the great snipe Gallinago media has declined dramatically in the western part of its distribution. To examine present population dynamics in the Scandinavian mountains, we collected and analysed a 19-year time series of counts of great snipe males at leks in central Norway, 1987-2005. 2. The population showed large annual fluctuations in the number of males displaying at lek sites (range 45-90 males at the peak of the mating season), but no overall trend. 3. We detected presence of direct density-dependent mechanisms regulating this population. Inclusion of the density-dependent term in a Ricker-type model significantly improved the fit with observed data (evaluated with Parametric Bootstrap Likelihood Ratio tests and Akaike's Information Criterion for small sample size). 4. An analysis of (a number of a priori likely) environmental covariates suggests that the population dynamics were affected by conditions influencing reproduction and survival of offspring during the summer, but not by conditions influencing survival at the wintering grounds in Africa. This is in contrast to many altricial birds breeding in the northern hemisphere, and supports the idea that population dynamics of migratory nidifugous birds are more influenced by conditions during reproduction. 5. Inclusion of these external factors into our model improved the detectability of density dependence. This illustrates that allowing for external effects may increase statistical power of density dependence tests and thus be of particular importance in relatively short time series. 6. In our best model of the population dynamics, two likely density-independent offspring survival covariates explained 47.3% of the variance in great snipe numbers (predation pressure estimated by willow grouse reproductive success and food availability estimated by the amount of precipitation in June), whereas density dependence explained 35.5%. Demographic stochasticity and unidentified environmental stochasticity may account for the remaining 17.2%.


Assuntos
Migração Animal/fisiologia , Cruzamento , Charadriiformes/fisiologia , Comportamento Predatório , Animais , Charadriiformes/crescimento & desenvolvimento , Meio Ambiente , Feminino , Masculino , Noruega , Densidade Demográfica , Dinâmica Populacional , Estações do Ano , Razão de Masculinidade , Processos Estocásticos
7.
Mol Ecol ; 16(7): 1439-51, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17391268

RESUMO

The genes of the major histocompatibility complex (MHC) code for proteins involved in antigen recognition and triggering of the adaptive immune response, and are therefore likely to be under selection from parasites. These selection regimes may vary in space and time. Here we report a strong geographical structure in MHC class II B genes of a migrating bird, the great snipe (Gallinago media). Genetic differentiation in the MHC between two ecologically distinct distributional regions (Scandinavian mountain populations vs. East European lowland populations) was still present after statistically controlling for the effect of selectively neutral variation (microsatellites) using partial Mantel tests. This suggests a role for selection in generating this spatial structure and that it represents local adaptation to different environments. Differentiation between populations within the two regions was negligible. Overall, we found a high number of MHC alleles (50, from 175 individuals). This, together with a tendency for a higher rate of nonsynonymous than synonymous substitutions in the peptide binding sites, and high Tajima's D in certain regions of the gene, suggests a history of balancing selection. MHC variation is often thought to be maintained by some form of balancing selection, but the nature of this selection remains unclear. Our results support the hypothesis that spatial variation in selection regimes contributes to the high polymorphism.


Assuntos
Charadriiformes/genética , Demografia , Ecossistema , Genes MHC da Classe II/genética , Variação Genética , Animais , Sequência de Bases , Genótipo , Geografia , Repetições de Microssatélites/genética , Dados de Sequência Molecular , Seleção Genética , Análise de Sequência de DNA
8.
Proc Biol Sci ; 274(1612): 1003-8, 2007 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-17264061

RESUMO

Conflicts over the delivery and sharing of food among family members are expected to lead to evolution of exaggerated offspring begging for food. Coevolution between offspring begging intensity and parent response depends on the genetic architecture of the traits involved. Given a genetic correlation between offspring begging intensity and parental response, there may be fast and arbitrary divergence in these behaviours between populations. However, there is limited knowledge about the genetic basis of offspring solicitation and parental response and whether these traits are genetically correlated. In this study, we performed a partial cross-fostering experiment of young between pied and collared flycatchers (Ficedula hypoleuca and Ficedula albicollis) and recorded the behaviour of individual offspring and their (foster)parents. We found that nestling collared flycatchers reached a higher phenotypic quality, estimated both as mass at fledging and as intensity of their T-lymphocyte-mediated immune response when raised by heterospecific foster parents. However, although collared flycatchers begged relatively more intensively, we found no evidence of corresponding higher resistance (i.e. lower feeding rate) of adult collared flycatchers than of adult pied flycatchers. Thus, the difference in offspring begging intensity between the two species seems not to be a result of a difference in escalation of the parent-offspring conflict. Instead, the species' divergence in exaggeration of offspring begging intensity 'honestly' matches a difference between the species in offspring need. This interpretation is strengthened by the fact that the difference in begging intensity between the two species increased as the season progressed, coinciding with the higher sensitivity of nestling collared flycatchers to the seasonal decline in food availability. Thus, the behavioural differentiation appears to be a direct consequence of a life-history differentiation (offspring growth patterns).


Assuntos
Evolução Biológica , Comportamento Alimentar/fisiologia , Comportamento de Nidação/fisiologia , Fenótipo , Aves Canoras/fisiologia , Análise de Variância , Animais , Aves Canoras/genética , Aves Canoras/imunologia , Especificidade da Espécie , Suécia
9.
Am Nat ; 166(2): 145-57, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16032570

RESUMO

Indirect mate choice is any behavior that restricts the individual's set of potential mates without discrimination of mate attributes directly, for example, by having preferences about where to mate. We analyzed a 14-year data set from great snipe (Gallinago media) leks for evidence of indirect mate choice based on relative and absolute position of lek territories. We found little or no effect of the centrality of territories on mating and no between-year consistency in the spatial distribution of matings within leks. Instead, the probability of matings occurring at a particular site increased if the current territory owner had mated the previous year. Furthermore, individual females returned in later seasons to mate with the same male as previously rather than at the same site. Previous work found that male interactions and dominance do not control matings and that females are very choosy about which territory they mate in. Here we show that this is because of the male occupying the territory rather than its position. We therefore conclude that direct female mate choice is the main behavioral process affecting variation in mating success among great snipe males, unlike in some lekking mammals where male competition and/or indirect mate choice appears more important.


Assuntos
Charadriiformes/fisiologia , Comportamento Sexual Animal , Animais , Comportamento de Escolha , Feminino , Masculino , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...