Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Endocr Connect ; 10(7): 782-788, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34137729

RESUMO

BACKGROUND: Type 2 diabetes is characterized, beyond the insulin resistance, by polyhormonal resistance. Thyroid hormonal resistance has not yet been described in this population of patients. Metformin is used to decrease insulin resistance, and at present, it is assumed to influence the effect of triiodothyronine, as well. METHODS: In this open-label, pilot, hypothesis-generating, follow-up study, 21 patients were included; all of them were euthyroid with drug naïve, newly diagnosed type 2 diabetes. Before and after 4 weeks of metformin therapy, fructosamine, homeostasis model assessment for insulin resistance (HOMA-IR), thyroid hormones, T3/T4 ratio, and TSH, as well as blood pressure and heart rate using ambulatory blood pressure monitor were measured. We also conducted an in vitro study to investigate the possible mechanisms of T3 resistance, assessing T3-induced Akt phosphorylation among normal (5 mM) and high (25 mM) glucose levels with or without metformin treatment in a human embryonal kidney cell line. RESULTS: Metformin decreased the level of T3 (P < 0.001), the ratio of T3/T4 (P = 0.038), fructosamine (P = 0.008) and HOMA-IR (P = 0.022). All these changes were accompanied by an unchanged TSH, T4, triglyceride, plasma glucose, bodyweight, blood pressure, and heart rate. In our in vitro study, T3-induced Akt phosphorylation decreased in cells grown in 25 mM glucose medium compared to those in 5 mM. Metformin could not reverse this effect. CONCLUSION: Metformin seems to improve T3 sensitivity in the cardiovascular system in euthyroid, type 2 diabetic patients, the mechanism of which may be supracellular.

2.
Curr Med Chem ; 23(7): 667-85, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26785996

RESUMO

Oxidative stress plays a major role in the pathogenesis of a variety of acute and chronic diseases. Measurement of the oxidative stress-related end products may be performed, e.g. that of structural isomers of the physiological para-tyrosine, namely meta- and ortho-tyrosine, that are oxidized derivatives of phenylalanine. Recent data suggest that in sepsis, serum level of meta-tyrosine increases, which peaks on the 2(nd) and 3(rd) days (p<0.05 vs. controls), and the kinetics follows the intensity of the systemic inflammation correlating with serum procalcitonin levels. In a similar study subset, urinary meta-tyrosine excretion correlated with both need of daily insulin dose and the insulin-glucose product in non-diabetic septic cases (p<0.01 for both). Using linear regression model, meta-tyrosine excretion, urinary meta-tyrosine/para-tyrosine, urinary ortho-tyrosine/para-tyrosine and urinary (meta- + orthotyrosine)/ para-tyrosine proved to be markers of carbohydrate homeostasis. In a chronic rodent model, we tried to compensate the abnormal tyrosine isomers using para-tyrosine, the physiological amino acid. Rats were fed a standard high cholesterol-diet, and were given para-tyrosine or vehicle orally. High-cholesterol feeding lead to a significant increase in aortic wall meta-tyrosine content and a decreased vasorelaxation of the aorta to insulin and the glucagon-like peptide-1 analogue, liraglutide, that both could be prevented by administration of para-tyrosine. Concluding, these data suggest that meta- and ortho-tyrosine are potential markers of oxidative stress in acute diseases related to oxidative stress, and may also interfere with insulin action in septic humans. Competition of meta- and ortho-tyrosine by supplementation of para-tyrosine may exert a protective role in oxidative stress-related diseases.


Assuntos
Doença Aguda , Doença Crônica , Estresse Oxidativo/efeitos dos fármacos , Tirosina/química , Tirosina/farmacologia , Animais , Humanos , Estereoisomerismo
3.
Oxid Med Cell Longev ; 2015: 839748, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26576228

RESUMO

Hydroxyl radical converts Phe to para-, meta-, and ortho-Tyr (p-Tyr, m-Tyr, o-Tyr), while Phe is converted enzymatically to p-Tyr in the kidney and could serve as substrate for gluconeogenesis. Pathological isoforms m- and o-Tyr are supposed to be involved in development of hormone resistances. Role of Phe and the three Tyr isoforms in influencing insulin need was examined in 25 nondiabetic septic patients. Daily insulin dose (DID) and insulin-glucose product (IGP) were calculated. Serum and urinary levels of Phe and Tyr isoforms were determined using a rpHPLC-method. Urinary m-Tyr/p-Tyr ratio was higher in patients with DID and IGP over median compared to those below median (P = 0.005 and P = 0.01, resp.). Urinary m-Tyr and m-Tyr/p-Tyr ratio showed positive correlation with DID (P = 0.009 and P = 0.023, resp.) and with IGP (P = 0.004 and P = 0.008, resp.). Serum Phe was a negative predictor, while serum p-Tyr/Phe ratio was positive predictor of both DID and IGP. Urinary m-Tyr and urinary m-Tyr/p-Tyr, o-Tyr/p-Tyr, and (m-Tyr+o-Tyr)/p-Tyr ratios were positive predictors of both DID and IGP. Phe and Tyr isoforms have a predictive role in carbohydrate metabolism of nondiabetic septic patients. Phe may serve as substrate for renal gluconeogenesis via enzymatically produced p-Tyr, while hydroxyl radical derived Phe products may interfere with insulin action.


Assuntos
Radical Hidroxila/química , Fenilalanina/química , Tirosina/química , Idoso , Idoso de 80 Anos ou mais , Metabolismo dos Carboidratos/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Feminino , Glucose/química , Glucose/metabolismo , Humanos , Insulina/administração & dosagem , Insulina/farmacologia , Isomerismo , Masculino , Pessoa de Meia-Idade , Fenilalanina/sangue , Fenilalanina/urina , Choque Séptico/metabolismo , Choque Séptico/patologia , Tirosina/sangue , Tirosina/urina
4.
Protein Pept Lett ; 22(8): 736-42, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26202368

RESUMO

Former data of our workgroup indicated that the accumulation of oxidized amino acids (meta- and ortho-tyrosine) due to oxidative stress may play an important role in the impaired insulininduced vasoactive properties of different arterial segments. There are evidences, that incorporation of these amino acids into cellular proteins leads to certain hormonal resistances, which might be restored by supplementation with the physiologic isoform, para-tyrosine. Rats in the control group were kept on a regular diet, rats in the cholesterol-fed group received high-fat diet, while the third group of rats received high-fat diet with para-tyrosine supplementation for 16 weeks. Plasma cholesterol level was significantly higher in the cholesterol-fed group, while the level of cholesterol in the cholesterol+para-tyrosine group did not differ significantly from that of the controls. Plasma level of insulin after glucose stimulation was decreased in the cholesterol-fed group, while that in the para-tyrosine supplemented group did not differ significantly from the controls. Vascular para-, meta- and ortho-tyrosine content was measured with HPLC. Elevated vascular meta-tyrosine/para-tyrosine ratio of cholesterol fed rats could be avoided by para-tyrosine supplementation. Vascular response of the thoracic aorta to insulin and liraglutide was assessed by a DMT multi-myograph. Cholesterol feeding resulted in vascular insulin-and liraglutide resistance, which was restored by para-tyrosine supplementation. Incorporation of the oxidative stress induced pathological tyrosine isoforms leads to vascular-hormone-resistances. We show that the physiological amino acid para-tyrosine is capable of restoring hypercholesterolemia-induced increased meta-tyrosine content of the vascular wall, thus attenuating functional vascular damage.


Assuntos
Colesterol/metabolismo , Dieta Hiperlipídica , Insulina/farmacologia , Liraglutida/farmacologia , Tirosina/farmacologia , Vasodilatação/efeitos dos fármacos , Animais , Glicemia/efeitos dos fármacos , Insulina/sangue , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Tirosina/administração & dosagem
5.
World J Diabetes ; 6(3): 500-7, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25897359

RESUMO

Oxidative stress processes play a major role in the development of the complications associated with diabetes and other diseases via non-enzymatic glycation, the hexosamine pathway, the polyol pathway and diacylglycerol-protein kinase C. Oxidative stress may lead to the production of hydroxyl free radicals, which can attack macromolecules, such as lipids, nucleic acids or amino acids. Phenylalanine (Phe) can be enzymatically converted to the physiological para-tyrosine (p-Tyr); however, a hydroxyl free radical attack on Phe may yield meta- and ortho-tyrosine (m- and o-Tyr, respectively) in addition to p-Tyr. Hence, m- and o-Tyr may be regarded as markers of hydroxyl free radical-induced damage. Their accumulation has been described; e.g., this accumulation has been found in the urine of patients with diabetes mellitus (DM) and/or chronic kidney disease, in cataract lenses, in vessel walls, in irradiated food and in amniotic fluid, and it may serve as an indicator of oxidative stress. The use of resveratrol to treat patients with type 2 DM led to a decrease in the urinary excretion of o-Tyr and concomitantly led to an improvement in insulin signaling and insulin sensitivity. Literature data also suggest that m- and o-Tyr may interfere with intracellular signaling. Our group has shown that erythropoietin (EPO) has insulin-like metabolic effects on fat cells in addition to its ability to promote the proliferation of erythroid precursor cells. We have shown that the supplementation of cell culture medium with m- and o-Tyr inhibits erythroblast cell proliferation, which could be ameliorated by p-Tyr. Additionally, in vivo, the o-Tyr/p-Tyr ratio is higher in patients with renal replacement therapy and a greater need for EPO. However, the o-Tyr/p-Tyr ratio was an independent determinant of EPO-resistance indices in our human study. The o-Tyr content of blood vessel walls inversely correlates with insulin- and acetylcholine-induced vasodilation, which could be further impaired by artificial oxidative stress and improved by the use of antioxidants. In rats that receive o-Tyr supplements, decreased vasorelaxation is detected in response to insulin. Additionally, o-Tyr supplementation led to the incorporation of the unnatural amino acid into cellular proteins and caused a decrease in the insulin-induced phosphorylation of endothelial nitric oxide synthase. Our data suggest that m- and o-Tyr may not only be markers of oxidative stress; instead, they may also be incorporated into cellular proteins, leading to resistance to insulin, EPO and acetylcholine.

6.
Cardiovasc Diabetol ; 13: 69, 2014 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-24693878

RESUMO

BACKGROUND: It has been reported that GLP-1 agonist exenatide (exendin-4) decreases blood pressure. The dose-dependent vasodilator effect of exendin-4 has previously been demonstrated, although the precise mechanism is not thoroughly described. Here we have aimed to provide in vitro evidence for the hypothesis that exenatide may decrease central (aortic) blood pressure involving three gasotransmitters, namely nitric oxide (NO) carbon monoxide (CO), and hydrogen sulphide (H2S). METHODS: We determined the vasoactive effect of exenatide on isolated thoracic aortic rings of adult rats. Two millimetre-long vessel segments were placed in a wire myograph and preincubated with inhibitors of the enzymes producing the three gasotransmitters, with inhibitors of reactive oxygen species formation, prostaglandin synthesis, inhibitors of protein kinases, potassium channels or with an inhibitor of the Na+/Ca2+-exchanger. RESULTS: Exenatide caused dose-dependent relaxation of rat thoracic aorta, which was evoked via the GLP-1 receptor and was mediated mainly by H2S but also by NO and CO. Prostaglandins and superoxide free radical also play a part in the relaxation. Inhibition of soluble guanylyl cyclase significantly diminished vasorelaxation. We found that ATP-sensitive-, voltage-gated- and calcium-activated large-conductance potassium channels are also involved in the vasodilation, but that seemingly the inhibition of the KCNQ-type voltage-gated potassium channels resulted in the most remarkable decrease in the rate of vasorelaxation. Inhibition of the Na+/Ca2+-exchanger abolished most of the vasodilation. CONCLUSIONS: Exenatide induces vasodilation in rat thoracic aorta with the contribution of all three gasotransmitters. We provide in vitro evidence for the potential ability of exenatide to lower central (aortic) blood pressure, which could have relevant clinical importance.


Assuntos
Aorta Torácica/metabolismo , Monóxido de Carbono/metabolismo , Sulfeto de Hidrogênio/metabolismo , Óxido Nítrico/biossíntese , Peptídeos/farmacologia , Vasodilatação/fisiologia , Peçonhas/farmacologia , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta Torácica/efeitos dos fármacos , Exenatida , Peptídeo 1 Semelhante ao Glucagon/agonistas , Masculino , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
7.
Redox Rep ; 19(5): 190-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24693974

RESUMO

Objectives Patients with end-stage renal failure (ESRF) treated with erythropoiesis-stimulating agents (ESAs) are often ESA-hyporesponsive associated with free radical production. Hydroxyl free radical converts phenylalanine into ortho-tyrosine, while physiological isomer para-tyrosine is formed enzymatically, mainly in the kidney. Production of 'para-tyrosine' is decreased in ESRF and it can be replaced by ortho-tyrosine in proteins. Our aim was to study the role of tyrosines in ESA-responsiveness. Methods Four groups of volunteers were involved in our cross-sectional study: healthy volunteers (CONTR; n = 16), patients on hemodialysis without ESA-treatment (non-ESA-HD; n = 8), hemodialyzed patients with ESA-treatment (ESA-HD; n = 40), and patients on continuous peritoneal dialysis (CAPD; n = 21). Plasma ortho-, para-tyrosine, and phenylalanine levels were detected using a high performance liquid chromatography (HPLC)-method. ESA-demand was expressed by ESA-dose, ESA-dose/body weight, and erythropoietin resistance index1 (ERI1, weekly ESA-dose/body weight/hemoglobin). Results We found significantly lower para-tyrosine levels in all groups of dialyzed patients when compared with control subjects, while in contrast ortho-tyrosine levels and ortho-tyrosine/para-tyrosine ratio were comparatively significantly higher in dialyzed patients. Among groups of dialyzed patients the ortho-tyrosine level and ortho-tyrosine/para-tyrosine ratio were significantly higher in ESA-HD than in the non-ESA-HD and CAPD groups. There was a correlation between weekly ESA-dose/body weight, ERI1, and ortho-tyrosine/para-tyrosine ratio (r = 0.441, P = 0.001; r = 0.434, P = 0.001, respectively). Our most important finding was that the ortho-tyrosine/para-tyrosine ratio proved to be an independent predictor of ERI1 (ß = 0.330, P = 0.016). In these multivariate regression models most of the known predictors of ESA-hyporesponsiveness were included. Discussion Our findings may suggest that elevation of the ratio of ortho-tyrosine/para-tyrosine could be responsible for decreased ESA-responsiveness in dialyzed patients.


Assuntos
Biomarcadores/sangue , Eritropoese/efeitos dos fármacos , Hematínicos/uso terapêutico , Falência Renal Crônica/tratamento farmacológico , Diálise Renal , Tirosina/sangue , Adulto , Idoso , Estudos de Casos e Controles , Cromatografia Líquida de Alta Pressão , Estudos Transversais , Feminino , Seguimentos , Humanos , Falência Renal Crônica/sangue , Masculino , Pessoa de Meia-Idade , Prognóstico
8.
Kidney Blood Press Res ; 38(2-3): 217-25, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24751667

RESUMO

BACKGROUND/AIMS: Erythropoietin-resistance is an unsolved concern in the treatment of renal anaemia. We aimed to investigate the possible role of ortho- and meta-tyrosine - the hydroxyl free radical products of L-phenylalanine - in the development of erythropoietin-resistance. METHODS: TF-1 erythroblast cell line was used. Cell concentration was determined on day 1; 2 and 3 by two independent observers simultaneously in Bürker cell counting chambers. Protein concentration was determined with colorimetric method. Para-, ortho- and meta-tyrosine levels were measured using reverse phase-HPLC with fluorescence detection. Using Western blot method activating phosphorylation of STAT5 and ERK1/2 were investigated. RESULTS: We found a time- and concentration-dependent decrease of erythropoietin-induced proliferative activity in case of ortho- and meta-tyrosine treated TF-1 erythroblasts, compared to the para-tyrosine cultured cells. Decreased erythropoietin-response could be regained with a competitive dose of para-tyrosine. Proteins of erythroblasts treated by ortho- or meta-tyrosine had lower para-tyrosine and higher ortho- or meta-tyrosine content. Activating phosphorylation of ERK and STAT5 due to erythropoietin was practically prevented by ortho- or meta-tyrosine treatment. CONCLUSION: According to this study elevated ortho- and meta-tyrosine content of erythroblasts may lead to the dysfunction of intracellular signaling, resulting in erythropoietin-hyporesponsiveness.


Assuntos
Células Eritroides/efeitos dos fármacos , Eritropoetina/farmacologia , Proteínas/metabolismo , Tirosina/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Resistência a Medicamentos , Epoetina alfa , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...