Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 23(23): 23892-23901, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27628915

RESUMO

To evaluate lung function responses to short-term indoor PM1 and PM2.5 concentrations, we conducted a panel study of healthy schoolchildren aged 13-14 years. The following lung function parameters FVC, FEV1, PEF, and mid expiratory flows MEF25, MEF50, and MEF75 were measured in 141 schoolchildren of the secondary school in Wroclaw, Poland in years 2009-2010. On days when spirometry tests were conducted, simultaneously, PM1 and PM2.5 samples were collected inside the school premises. Information about differentiating factors for children including smoking parents, sex, living close to busy streets, dust, mold, and pollen allergies were collected by means of questionnaires. To account for repeated measurements, the method of generalized estimating equations (GEE) was used. The GEE models for the entire group of children revealed the adverse effects (p < 0.05) of PM1 and PM2.5. Small differences in effects estimates per interquartile range (IQR) of PM1 and PM2.5 on MEF25 (5.1 and 4.8 %), MEF50 (3.7 and 3.9 %), MEF75 (3.5 and 3.6 %) and FEV1 (1.3 and 1.0 %) imply that PM1 was likely the component of PM2.5 that might have a principal health effect on these lung function parameters. However, the reduction of FVC and PEF per IQR for PM2.5 (2.1 and 5.2 %, respectively) was higher than for PM1 (1.0 and 4.4 %, respectively). Adjustment for potential confounders did not change the unadjusted analysis.


Assuntos
Poluentes Atmosféricos/toxicidade , Poluição do Ar em Ambientes Fechados , Exposição Ambiental , Pulmão/fisiologia , Material Particulado/toxicidade , Adolescente , Feminino , Volume Expiratório Forçado/efeitos dos fármacos , Humanos , Estudos Longitudinais , Pulmão/efeitos dos fármacos , Masculino , Polônia
2.
Environ Monit Assess ; 185(1): 581-601, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22411028

RESUMO

The paper discusses ambient concentrations of PM(2.5) (ambient fine particles) and of 29 PM(2.5)-related elements in Zabrze and Katowice, Poland, in 2007. The elemental composition of PM(2.5) was determined using energy dispersive X-ray fluorescence (EDXRF). The mobility (cumulative percentage of the water-soluble and exchangeable fractions of an element in its total concentration) of 18 PM(2.5)-related elements in Zabrze and Katowice was computed by using sequential extraction and EDXRF combined into a simple method. The samples were extracted twice: in deionized water and in ammonium acetate. In general, the mobility and the concentrations of the majority of the elements were the same in both cities. S, Cl, K, Ca, Zn, Br, Ba, and Pb in both cities, Ti and Se in Katowice, and Sr in Zabrze had the mobility greater than 70%. Mobility of typical crustal elements, Al, Si, and Ti, because of high proportion of their exchangeable fractions in PM, was from 40 to 66%. Mobility of Fe and Cu was lower than 30%. Probable sources of PM(2.5) were determined by applying principal component analysis and multiple regression analysis and computing enrichment factors. Great part of PM(2.5) (78% in Katowice and 36% in Zabrze) originated from combustion of fuels in domestic furnaces (fossil fuels, biomass and wastes, etc.) and liquid fuels in car engines. Other identified sources were: power plants, soil, and roads in Zabrze and in Katowice an industrial source, probably a non-ferrous smelter or/and a steelwork, and power plants.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental , Material Particulado/análise , Movimentos do Ar , Tamanho da Partícula , Polônia , Análise de Componente Principal , Análise de Regressão
3.
ScientificWorldJournal ; 2012: 956401, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22629226

RESUMO

Urban air pollution is widely recognized. Recently, there have been a few projects that examined air quality in rural areas (e.g., AUPHEP project in Austria, WOODUSE project in Denmark). Here we present the results within the International Cooperation Project RER/2/005 targeted at studying the effect of local combustion processes to air quality in the village of Brzezina in the countryside north-west of Wroclaw (south western Poland). We identified the potential emission sources and quantified their contributions. The ambient aerosol monitoring (PM(10) and elemental concentrations) was performed during 4 measurement cycles, in summer 2009, 2010 and in winter 2010, 2011. Some receptor modeling techniques, factor analysis-multiple linear regression analysis (FA-MLRA) and potential source localization function (PSLF), have been used. Different types of fuel burning along with domestic refuse resulted in an increased concentration of PM(10) particle mass, but also by an increased in various other compounds (As, Pb, Zn). Local combustion sources contributed up to 80% to PM(10) mass in winter. The effect of other sources was small, from 6 to 20%, dependently on the season. Both PM(10) and elemental concentrations in the rural settlement were comparable to concentrations at urban sites in summer and were much higher in winter, which can pose asignificant health risk to its inhabitants.


Assuntos
Aerossóis/análise , Monitoramento Ambiental , Incineração/instrumentação , Material Particulado/análise , Material Particulado/química , Estações do Ano , Polônia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...