Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Funct Plant Biol ; 48(4): 422-433, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287949

RESUMO

Recent studies have suggested that predawn stomatal opening may enhance early-morning photosynthesis (A) and improve the relative growth rate of trees. However, the causality between night-time stomatal conductance, A, and tree growth is disputable because stomatal opening in darkness can be mediated by previous day photosynthate loads and might be a consequence of growth-related processes like dark respiration (R). To identify linkages between night-time leaf conductance (gl_night), A, R, and tree growth, we conducted an experiment in hybrid aspen saplings grown under different air relative humidity (RH) conditions and previous day irradiance level (IR_pday). Predawn leaf conductance (gl_predawn) depended on RH, IR_pday and R (P < 0.05), whereas early-morning gross A (Agross_PAR500) depended on IR_pday and gl_predawn (P < 0.001). Daytime net A was positively related to Agross_PAR500 and leaf [N] (P < 0.05). Tree diameter and height increment correlated positively with gl at the beginning and middle of the night (P < 0.05) but not before dawn. Although our results demonstrate that gl_night was related to tree growth, the relationship was not determined by R. The linkage between gl_predawn and Agross_PAR500 was modified by IR_pday, indicating that daily CO2 assimilation probably provides feedback for stomatal opening before dawn.


Assuntos
Fotossíntese , Folhas de Planta , Escuridão , Umidade , Árvores
2.
Tree Physiol ; 37(9): 1166-1181, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28460081

RESUMO

Cuticular wax layer is the first barrier against the outside environment and the first defense encountered by herbivores and pathogens. The effects of environmental factors on cuticular chemistry, and on the formation of glandular trichomes that account for the storage and secretion of lipophilic compounds to the leaf surface are poorly understood. Low vapor pressure deficit (VPD) has shown to reduce the nitrogen (N) status of plants. Thus, we studied the effects of elevated air humidity, indicated as VPD, and the effect of N fertilization on cuticular waxes and glandular trichome density in silver birch (Betula pendula Roth). Experiments were carried out in growth chambers with juvenile plants and in a long-term field experiment with older trees. Low VPD reduced the glandular trichome density in both experiments, in chamber and in field. The contents of the major triterpenoid and flavonoid aglycones correlated positively with glandular trichome density, which supports the role of trichomes in the exudation of secondary compounds to the leaf surface. A closer examination of the cuticular wax chemistry in the chamber experiment revealed that low VPD and N supply affected the composition of cuticular waxes, but not the total wax content. The deposition of different wax compounds followed a co-ordinated pattern in birch leaves, but different compound groups varied in their responses to N fertilization and low VPD. Low VPD reduced the hydrophobicity of cuticular waxes, as demonstrated by lower alkane content and less hydrophobic flavonoid profile in low VPD than in high VPD. Reduced hydrophobicity of the wax layer is presumed to increase leaf wettability. Together with reduced trichome density in low VPD it may enhance the susceptibility of trees to fungal pathogens and herbivores. High N supply under low VPD reduced the effect of low VPD on the cuticular wax composition. Total fatty acid content and the expression of ß-amyrin synthase were lower under high N supply than under moderate N supply irrespective of VPD treatment. Nitrogen availability and decreasing VPD will modify leaf surface properties in silver birch and thereby affect tree defence against abiotic and biotic stress factors that emerge under climate change.


Assuntos
Betula/fisiologia , Folhas de Planta/química , Tricomas/fisiologia , Pressão de Vapor , Ceras/química , Mudança Climática
3.
Glob Chang Biol ; 23(5): 1961-1974, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27779805

RESUMO

The interactive effects of climate variables and tree-tree competition are still insufficiently understood drivers of forest response to global climate change. Precipitation and air humidity are predicted to rise concurrently at high latitudes of the Northern Hemisphere. We investigated whether the growth response of deciduous trees to elevated air humidity varies with their competitive status. The study was conducted in seed-originated silver birch and monoclonal hybrid aspen stands grown at the free air humidity manipulation (FAHM) experimental site in Estonia, in which manipulated stands (n = 3 for both species) are exposed to artificially elevated relative air humidity (6-7% over the ambient level). The study period included three growing seasons during which the stands had reached the competitive stage (trees were 7 years old in the final year). A significant 'treatment×competitive status' interactive effect on growth was detected in all years in birch (P < 0.01) and in one year in aspen stands (P = 0.015). Competitively advantaged trees were always more strongly affected by elevated humidity. Initially the growth of advantaged and neutral trees of both species remained significantly suppressed in humidified stands. In the following years, dominance and elevated humidity had a synergistic positive effect on the growth of birches. Aspens with different competitive status recovered more uniformly, attaining similar relative growth rates in manipulated and control stands, but preserved a significantly lower total growth yield due to severe initial growth stress. Disadvantaged trees of both species were never significantly affected by elevated humidity. Our results suggest that air humidity affects trees indirectly depending on their social status. Therefore, the response of northern temperate and boreal forests to a more humid climate in future will likely be modified by competitive relationships among trees, which may potentially affect species composition and cause a need to change forestry practices.


Assuntos
Mudança Climática , Umidade , Árvores , Betula , Clima , Estônia
4.
J Exp Bot ; 67(14): 4367-78, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27255929

RESUMO

Relative air humidity (RH) is expected to increase in northern Europe due to climate change. Increasing RH reduces the difference of water vapour pressure deficit (VPD) between the leaf and the atmosphere, and affects the gas exchange of plants. Little is known about the effects of decreased VPD on plant metabolism, especially under field conditions. This study was conducted to determine the effects of artificially decreased VPD on silver birch (Betula pendula Roth.) and hybrid aspen (Populus tremula L.×P. tremuloides Michx.) foliar metabolite and nutrient profiles in a unique free air humidity manipulation (FAHM) field experiment during the fourth season of humidity manipulation, in 2011. Long-term exposure to decreased VPD modified nutrient homeostasis in tree leaves, as demonstrated by a lower N concentration and N:P ratio in aspen leaves, and higher Na concentration and lower K:Na ratio in the leaves of both species in decreased VPD than in ambient VPD. Decreased VPD caused a shift in foliar metabolite profiles of both species, affecting primary and secondary metabolites. Metabolic adjustment to decreased VPD included elevated levels of starch and heptulose sugars, sorbitol, hemiterpenoid and phenolic glycosides, and α-tocopherol. High levels of carbon reserves, phenolic compounds, and antioxidants under decreased VPD may modify plant resistance to environmental stresses emerging under changing climate.


Assuntos
Betula/metabolismo , Folhas de Planta/metabolismo , Populus/metabolismo , Antioxidantes/análise , Antioxidantes/metabolismo , Glicosídeos/análise , Glicosídeos/metabolismo , Umidade , Fenóis/análise , Fenóis/metabolismo , Folhas de Planta/química , Sorbitol/análise , Sorbitol/metabolismo , Amido/análise , Amido/metabolismo , alfa-Tocoferol/análise , alfa-Tocoferol/metabolismo
5.
AoB Plants ; 72015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26187607

RESUMO

Plant architecture is shaped by endogenous growth processes interacting with the local environment. The current study investigated crown development in young black alder trees, assessing the effects of local light conditions and branch height on individual bud mass and contents. In addition, we examined the characteristics of parent shoots [the cross-sectional area (CSA) of stem and total leaf area, shoot length, the number of nodes, the number and total mass of buds per shoot] and leaf-stem as well as bud-stem allometry, as several recent studies link bud development to hydraulic architecture. We sampled shoots from top branches and two lower-crown locations: one subjected to deep shade and the other resembling the upper branches in light availability. Sampling was carried out three times between mid-July and late October, spanning from the early stages of bud growth to dormancy. Individual bud mass and shoot characteristics varied in response to light conditions, whereas leaf-stem allometry depended on branch height, most likely compensating for the increasing length of hydraulic pathways. Despite the differences in individual bud mass, the number of preformed leaves varied little across the crown, indicating that the plasticity in shoot characteristics was mainly achieved by neoformation. The relationship between total bud mass and stem CSA scaled similarly across crown locations. However, scaling slopes gradually decreased throughout the sampling period, driven by bud rather than by stem growth. This suggests that the allometry of total bud mass and CSA of stem is regulated locally, instead of resulting from crown-level processes.

6.
PLoS One ; 7(8): e42648, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22880067

RESUMO

At northern latitudes a rise in atmospheric humidity and precipitation is predicted as a consequence of global climate change. We studied several growth and functional traits of hybrid aspen (Populus tremula L.×P. tremuloides Michx.) in response to elevated atmospheric humidity (on average 7% over the ambient level) in a free air experimental facility during three growing seasons (2008-2010) in Estonia, which represents northern temperate climate (boreo-nemoral zone). Data were collected from three humidified (H) and three control (C) plots, and analysed using nested linear models. Elevated air humidity significantly reduced height, stem diameter and stem volume increments and transpiration of the trees whereas these effects remained highly significant also after considering the side effects from soil-related confounders within the 2.7 ha study area. Tree leaves were smaller, lighter and had lower leaf mass per area (LMA) in H plots. The magnitude and significance of the humidity treatment effect--inhibition of above-ground growth rate--was more pronounced in larger trees. The lower growth rate in the humidified plots can be partly explained by a decrease in transpiration-driven mass flow of NO(3) (-) in soil, resulting in a significant reduction in the measured uptake of N to foliage in the H plots. The results suggest that the potential growth improvement of fast-growing trees like aspens, due to increasing temperature and atmospheric CO(2) concentration, might be smaller than expected at high latitudes if a rise in atmospheric humidity simultaneously takes place.


Assuntos
Altitude , Atmosfera , Mudança Climática , Umidade , Nitrogênio/metabolismo , Transpiração Vegetal/fisiologia , Populus/crescimento & desenvolvimento , Estônia , Hibridização Genética , Folhas de Planta/fisiologia , Caules de Planta/anatomia & histologia , Populus/metabolismo , Chuva , Estações do Ano , Temperatura , Água/metabolismo
7.
Tree Physiol ; 31(8): 855-64, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21856657

RESUMO

To clarify interactions between stomatal responses to two simultaneous environmental changes, the rates of change in stomatal conductance were measured after simultaneously changing two environmental factors from the set of air humidity, leaf water potential (hydraulic environmental factors), air CO(2) concentration and light intensity (photosynthetic environmental factors). The stomatal responses to changes in leaf water potential were not significantly modified by any other simultaneous environmental change. A decrease in air humidity was followed by a decrease in stomatal conductance, and an increase in air humidity was followed by an increase in the conductance, irrespective of the character of the simultaneous change in the photosynthetic environmental factor. If the simultaneous change had an opposite effect on stomatal conductance, the rate of change in stomatal conductance was higher than the theoretical summed rate-the sum of the rate following one environmental change and the rate following another environmental change, measured separately. That is, the stomatal response to air humidity dominated over the responses to photosynthetic environmental factors. Yet, if the simultaneous change in photosynthetic factors had a codirectional effect on stomatal conductance, the rate of stomatal conductance change was lower than the theoretical summed rate. After a simultaneous change of two photosynthetic environmental factors, the rate of stomatal conductance change was very similar to the theoretical rate, if both the environmental changes had a codirectional effect on stomatal conductance. If the changes in the photosynthetic factors had opposite effects on stomatal conductance, the conductance increased, irrespective of the character of the increasing environmental factor. In drought-stressed trees, the rates of change in stomatal conductance tended to differ from the theoretical summed rates more than in well-watered trees. Stomatal closure following an increase in CO(2) concentration was the stomatal response that was most strongly suppressed by the response to another simultaneous environmental change. Six species of temperate deciduous trees were shown to be similar in their relations between the stomatal responses to two simultaneous environmental changes. The mechanism and ecological significance of the interactions between the two signal response pathways of stomata are discussed.


Assuntos
Dióxido de Carbono/fisiologia , Estômatos de Plantas/fisiologia , Árvores/fisiologia , Água/fisiologia , Tempo (Meteorologia) , Secas , Fotossíntese
8.
Environ Pollut ; 158(4): 992-9, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19854548

RESUMO

The effect of elevated CO(2) and O(3) on apparent quantum yield (varphi), maximum photosynthesis (P(max)), carboxylation efficiency (V(cmax)) and electron transport capacity (J(max)) at different canopy locations was studied in two aspen (Populus tremuloides) clones of contrasting O(3) tolerance. Local light climate at every leaf was characterized as fraction of above-canopy photosynthetic photon flux density (%PPFD). Elevated CO(2) alone did not affect varphi or P(max), and increased J(max) in the O(3)-sensitive, but not in the O(3)-tolerant clone. Elevated O(3) decreased leaf chlorophyll content and all photosynthetic parameters, particularly in the lower canopy, and the negative impact of O(3) increased through time. Significant interaction effect, whereby the negative impact of elevated O(3) was exaggerated by elevated CO(2) was seen in Chl, N and J(max), and occurred in both O(3)-tolerant and O(3)-sensitive clones. The clonal differences in the level of CO(2)xO(3) interaction suggest a relationship between photosynthetic acclimation and background O(3) concentration.


Assuntos
Poluentes Atmosféricos/toxicidade , Dióxido de Carbono/metabolismo , Ozônio/toxicidade , Fotossíntese/efeitos dos fármacos , Populus/metabolismo , Relação Dose-Resposta a Droga , Transporte de Elétrons/efeitos dos fármacos , Ozônio/metabolismo , Folhas de Planta/metabolismo , Populus/efeitos dos fármacos , Populus/crescimento & desenvolvimento
9.
Environ Pollut ; 158(4): 983-91, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19910096

RESUMO

Photosynthetic acclimation under elevated carbon dioxide (CO(2)) and/or ozone (O(3)) has been the topic of discussion in many papers recently. We examined whether or not aspen plants grown under elevated CO(2) and/or O(3) will acclimate after 11 years of exposure at the Aspen Face site in Rhinelander, WI, USA. We studied diurnal patterns of instantaneous photosynthetic measurements as well as A/C(i) measurements monthly during the 2004-2008 growing seasons. Our results suggest that the responses of two aspen clones differing in O(3) sensitivity showed no evidence of photosynthetic and stomatal acclimation under either elevated CO(2), O(3) or CO(2) + O(3). Both clones 42E and 271 did not show photosynthetic nor stomatal acclimation under elevated CO(2) and O(3) after a decade of exposure. We found that the degree of increase or decrease in the photosynthesis and stomatal conductance varied significantly from day to day and from one season to another.


Assuntos
Aclimatação/efeitos dos fármacos , Poluentes Atmosféricos/toxicidade , Dióxido de Carbono/metabolismo , Ozônio/toxicidade , Fotossíntese/efeitos dos fármacos , Populus/metabolismo , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/metabolismo , Populus/efeitos dos fármacos
10.
Environ Pollut ; 158(4): 1000-7, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19796856

RESUMO

The diurnal changes in light-saturated photosynthesis (Pn) under elevated CO(2) and/or O(3) in relation to stomatal conductance (g(s)), water potential, intercellular [CO(2)], leaf temperature and vapour-pressure difference between leaf and air (VPD(L)) were studied at the Aspen FACE site. Two aspen (Populus tremuloides Michx.) clones differing in their sensitivity to ozone were measured. The depression in Pn was found after 10:00 h. The midday decline in Pn corresponded with both decreased g(s) and decreased Rubisco carboxylation efficiency, Vc(max). As a result of increasing VPD(L), g(s) decreased. Elevated [CO(2)] resulted in more pronounced midday decline in Pn compared to ambient concentrations. Moreover, this decline was more pronounced under combined treatment compared to elevated CO(2) treatment. The positive impact of CO(2) on Pn was relatively more pronounced in days with environmental stress but relatively less pronounced during midday depression. The negative impact of ozone tended to decrease in both cases.


Assuntos
Dióxido de Carbono/metabolismo , Ritmo Circadiano/efeitos dos fármacos , Ozônio/toxicidade , Fotossíntese/efeitos dos fármacos , Populus/efeitos dos fármacos , Clorofila/metabolismo , Mudança Climática , Ozônio/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Estômatos de Plantas/metabolismo , Populus/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Água/metabolismo
11.
Environ Pollut ; 158(4): 1015-22, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19766365

RESUMO

The balance of mechanistic detail with mathematical simplicity contributes to the broad use of the Farquhar, von Caemmerer and Berry (FvCB) photosynthetic rate model. Here the FvCB model was coupled with a stomatal conductance model to form an [A,g(s)] model, and parameterized for mature Populus tremuloides leaves under varying CO(2) and temperature levels. Data were selected to be within typical forest light, CO(2) and temperature ranges, reducing artifacts associated with data collected at extreme values. The error between model-predicted photosynthetic rate (A) and A data was measured in three ways and found to be up to three times greater for each of two independent data sets than for a base-line evaluation using parameterization data. The evaluation methods used here apply to comparisons of model validation results among data sets varying in number and distribution of data, as well as to performance comparisons of [A,g(s)] models differing in internal-process components.


Assuntos
Modelos Biológicos , Fotossíntese , Folhas de Planta/metabolismo , Populus/metabolismo
12.
Funct Plant Biol ; 35(2): 103-110, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32688761

RESUMO

Stomatal density and size were measured along the light gradient of a Betula pendula Roth. canopy in relation to microclimatic conditions. The theoretical stomatal conductance was calculated using stomatal density and dimensions to predict to what degree stomatal conductance is related to anatomical properties and relative stomatal opening. Stomatal density was higher and leaf area smaller in the upper canopy, whereas epidermal cell density did not change significantly along the canopy light gradient, indicating that stomatal initiation is responsible for differences in stomatal density. Stomatal dimensions - the length of guard cell on the dorsal side and the guard cell width - decreased with declining light availability. Maximum measured stomatal conductance and modelled stomatal conductance were higher at the top of the crown. The stomata operate closer to their maximum openness and stomatal morphology is a more important determinant of stomatal conductance in the top leaves than in leaves of lower canopy. As stomata usually limit photosynthesis more in upper than in lower canopy, it was concluded that stomatal morphology can principally be important for photosynthesis limitation in upper canopy.

13.
Tree Physiol ; 28(2): 243-54, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18055435

RESUMO

Paper birch (Betula papyrifera Marsh.) and three trembling aspen clones (Populus tremuloides Michx.) were studied to determine if alterations in carbon gain in response to an elevated concentration of CO(2) ([CO(2)]) or O(3) ([O(3)]) or a combination of both affected bud size and carbohydrate composition in autumn, and early leaf development in the following spring. The trees were measured for gas exchange, leaf size, date of leaf abscission, size and biochemical characteristics of the overwintering buds and early leaf development during the 8th-9th year of free-air CO(2) and O(3) exposure at the Aspen FACE site located near Rhinelander, WI. Net photosynthesis was enhanced 49-73% by elevated [CO(2)], and decreased 13-30% by elevated [O(3)]. Elevated [CO(2)] delayed, and elevated [O(3)] tended to accelerate, leaf abscission in autumn. Elevated [CO(2)] increased the ratio of monosaccharides to di- and oligosaccharides in aspen buds, which may indicate a lag in cold acclimation. The total carbon concentration in overwintering buds was unaffected by the treatments, although elevated [O(3)] decreased the amount of starch by 16% in birch buds, and reduced the size of aspen buds, which may be related to the delayed leaf development in aspen during the spring. Elevated [CO(2)] generally ameliorated the effects of elevated [O(3)]. Our results show that both elevated [CO(2)] and elevated [O(3)] have the potential to alter carbon metabolism of overwintering buds. These changes may cause carry-over effects during the next growing season.


Assuntos
Betula/crescimento & desenvolvimento , Dióxido de Carbono/farmacologia , Carbono/metabolismo , Flores/efeitos dos fármacos , Flores/fisiologia , Ozônio/farmacologia , Populus/crescimento & desenvolvimento , Betula/efeitos dos fármacos , Betula/efeitos da radiação , Células Clonais , Flores/efeitos da radiação , Luz , Tamanho do Órgão/efeitos dos fármacos , Tamanho do Órgão/efeitos da radiação , Fotossíntese/efeitos dos fármacos , Fotossíntese/efeitos da radiação , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/efeitos da radiação , Populus/efeitos dos fármacos , Populus/efeitos da radiação , Estações do Ano , Solo , Temperatura , Fatores de Tempo , Água
14.
Funct Plant Biol ; 32(12): 1077-1087, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32689203

RESUMO

The seasonal course of maximum hydraulic conductance of leaf laminae (K lamina) of shoots correlated strongly with the seasonal course of the maximum hydraulic conductance of leaf laminae of HgCl2-treated shoots (K lamina(HgCl2)), and with the seasonal course of the difference (dK lamina) between K lamina and K lamina(HgCl2). However, it did not correlate strongly with the seasonal course of the hydraulic conductance of stem and petioles of the shoot (K stpt) in six temperate deciduous tree species. The species ranked according to K lamina as follows: Populus tremula L. > Salix caprea L. > Padus avium Mill. > Quercus robur L. > Tilia cordata Mill. > Acer platanoides L. The species-specific maxima of K lamina correlated positively with the simultaneous values of K lamina(HgCl2), dK lamina and K stpt; the correlation was strongest with K lamina(HgCl2). It was concluded that the seasonal dynamics of maximum hydraulic conductance of leaf laminae was determined almost equally by the seasonal dynamics of the hydraulic conductance of foliar protoplasts and apoplast, but the inter-specific differences in K lamina were mainly caused by the different apoplastic hydraulic conductance in leaves of these species. The relative contribution of dK lamina (in K lamina) was highest in slow-growing species (~55% in A. platanoides) and the lowest in fast-growers (~30% in S. caprea).

15.
Tree Physiol ; 25(11): 1409-18, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16105808

RESUMO

Leaf hydraulic conductance (K(leaf)) and several characteristics of hydraulic architecture and physiology were measured during the first 10 weeks of leaf ontogeny in Populus tremula L. saplings growing under control, mild water deficit or elevated temperature conditions. During the initial 3 weeks of leaf ontogeny, most measured characteristics rapidly increased. Thereafter, a gradual decrease in K(leaf) was correlated with a decrease in leaf osmotic potential under all conditions, and with increases in leaf dry mass per area and bulk modulus of elasticity under mild water deficit and control conditions. From about Week 3 onward, K(leaf) was 33% lower in trees subjected to mild water deficit and 33% higher in trees held at an elevated temperature relative to control trees. Mild water deficit and elevated temperature treatment had significant and opposite effects on most of the other characteristics measured. The ontogenetic maximum in K(leaf) was correlated positively with the width of xylem conduits in the midrib, but negatively with the overall width of the midrib xylem, number of lateral ribs, leaf dry mass per area and bulk modulus of elasticity. The ontogenetic maximum in K(leaf) was also correlated positively with the proportion of intercellular spaces and leaf osmotic potential, but negatively with leaf thickness, volume of mesophyll cells and epidermis and number of cells per total mesophyll cell volume, the closest relationships being between leaf osmotic potential and number of cells per total mesophyll cell volume. It was concluded that differences in protoplast traits are more important than differences in xylem or parenchymal cell wall traits in determining the variability in K(leaf) among leaves growing under different environmental conditions.


Assuntos
Folhas de Planta/fisiologia , Populus/fisiologia , Árvores/fisiologia , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Transpiração Vegetal/fisiologia
16.
Tree Physiol ; 22(4): 267-76, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11874723

RESUMO

Correlations between leaf abscisic acid concentration ([ABA]), stomatal conductance (gs), rate of stomatal opening in response to an increase in leaf water potential (si), shoot hydraulic conductance (L) and photosynthetic characteristics were examined in saplings of six temperate deciduous tree species: Acer platanoides L., Padus avium Mill., Populus tremula L., Quercus robur L., Salix caprea L. and Tilia cordata Mill. Species-specific values of foliar [ABA] were negatively related to the mean values of gs, si, L and light- and CO2- saturated net photosynthesis (P(max)), thus providing strong correlative evidence of a scaling of foliar gas exchange and hydraulic characteristics with leaf endogenous [ABA]. In addition, we suggest that mean gs, si, L and Pmax for mature leaves may partly be determined by the species-specific [ABA] during leaf growth. The most drought-intolerant species had the lowest [ABA] and the highest gs, suggesting that interspecific differences in [ABA] may be linked to differences in species-specific water-use efficiency. Application of high concentrations of exogenous ABA led to large decreases in gs, si and P(max), further underscoring the direct role of ABA in regulating stomatal opening and photosynthetic rate. Exogenous ABA also decreased L, but the decreases were considerably smaller than the decreases in gs, si and Pmax. Thus, exogenous ABA predominantly affected the stomata directly, but modification of L by ABA may also be an important mechanism of ABA action. We conclude that interspecific variability in endogenous [ABA] during foliage growth and in mature leaves provides an important factor explaining observed differences in L, gs, si and Pmax among temperate deciduous tree species.


Assuntos
Ácido Abscísico/fisiologia , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Brotos de Planta/fisiologia , Transpiração Vegetal/fisiologia , Árvores/fisiologia , Ácido Abscísico/análise , Dióxido de Carbono/fisiologia , Folhas de Planta/química , Prunus/fisiologia , Quercus/fisiologia , Salicaceae/fisiologia , Sapindaceae/fisiologia , Tiliaceae/fisiologia , Água/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...