Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 98(15): 8189-95, 2001 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-11459952

RESUMO

Crossing over by homologous recombination between monomeric circular chromosomes generates dimeric circular chromosomes that cannot be segregated to daughter cells during cell division. In Escherichia coli, homologous recombination is biased so that most homologous recombination events generate noncrossover monomeric circular chromosomes. This bias is lost in ruv mutants. A novel protein, RarA, which is highly conserved in eubacteria and eukaryotes and is related to the RuvB and the DnaX proteins, gamma and tau, may influence the formation of crossover recombinants. Those dimeric chromosomes that do form are converted to monomers by Xer site-specific recombination at the recombination site dif, located in the replication terminus region of the E. coli chromosome. The septum-located FtsK protein, which coordinates cell division with chromosome segregation, is required for a complete Xer recombination reaction at dif. Only correctly positioned dif sites present in a chromosomal dimer are able to access septum-located FtsK. FtsK acts by facilitating a conformational change in the Xer recombination Holliday junction intermediate formed by XerC recombinase. This change provides a substrate for XerD, which then completes the recombination reaction.


Assuntos
Segregação de Cromossomos , Replicação do DNA , Proteínas de Escherichia coli , Integrases , Recombinação Genética , Sequência de Aminoácidos , DNA Nucleotidiltransferases/metabolismo , Dimerização , Escherichia coli/genética , Genes Bacterianos/fisiologia , Humanos , Dados de Sequência Molecular , Recombinases , Especificidade por Substrato
2.
Biochem J ; 353(Pt 2): 207-13, 2001 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-11139382

RESUMO

A purification procedure for flavohaemoglobin Hmp (NO oxygenase) is described that gives high yields of protein with equistoichiometric haem and FAD contents. H(2)O(2) accumulated on NADH oxidation by the purified protein and in cell extracts with elevated Hmp contents. H(2)O(2) probably arose by dismutation from superoxide, which was also detectable during oxygen reduction; water was not a product. In the absence of agents that scavenge superoxide and peroxide, the mean K(m) for oxygen was 80 microM; the addition of 15 microM FAD decreased the K(m) for oxygen to 15 microM without a change in V(max) but catalysed cyanide-insensitive oxygen consumption, attributed to electron transfer from flavins to O(2). Purified Hmp consumed NO in the absence of added FAD (approx. 1 O(2) per NO), which is consistent with NO oxygenation. However, half-maximal rates of NO-stimulated O(2) consumption required approx. 47 microM O(2); NO removal was ineffective at physiologically relevant O(2) concentrations (below approx. 30 microM O(2)). On exhaustion of O(2), NO was removed by a cyanide-sensitive process attributed to NO reduction, with a turnover number approx. 1% of that for oxygenase activity. These results suggest that the ability of Hmp to detoxify NO might be compromised in hypoxic environments.


Assuntos
Proteínas de Bactérias/metabolismo , Di-Hidropteridina Redutase , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Hemeproteínas/metabolismo , NADH NADPH Oxirredutases , Óxido Nítrico/farmacologia , Oxigênio/metabolismo , Anaerobiose , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/farmacologia , Hemeproteínas/química , Hemeproteínas/isolamento & purificação , Oxigênio/química , Consumo de Oxigênio
3.
FEBS Lett ; 414(2): 373-6, 1997 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-9315722

RESUMO

The ubiCA operon of Escherichia coli encodes enzymes for the first two steps of ubiquinone biosynthesis. A monolysogen (ubiC-lacZ operon fusion) was constructed to study ubiCA regulation. Expression was higher during aerobic growth than anaerobically, and increased with rate of oxygen supply. Although ubiquinone is implicated in antioxidant roles, ubiC expression was not elevated in response to hydrogen peroxide or the redox cycling agent, paraquat. Glucose repressed expression and mutation of cya (encoding adenylate cyclase) increased expression. Anaerobically utilised electron acceptors (nitrite, nitrate, fumarate) did not affect expression. ubiC expression appears to be negatively regulated by Fnr and IHF.


Assuntos
Alquil e Aril Transferases , Escherichia coli/enzimologia , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Óperon , Oxo-Ácido-Liases/biossíntese , Transferases/biossíntese , Ubiquinona/biossíntese , Aerobiose , Anaerobiose , Sequência de Bases , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Genótipo , Glucose/farmacologia , Peróxido de Hidrogênio/farmacologia , Cinética , Dados de Sequência Molecular , Oxo-Ácido-Liases/genética , Paraquat/farmacologia , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/biossíntese , Transferases/genética , beta-Galactosidase/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...