Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 242(2): 610-625, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38402521

RESUMO

Many pathogens evolved compartmentalized genomes with conserved core and variable accessory regions (ARs) that carry effector genes mediating virulence. The fungal plant pathogen Fusarium oxysporum has such ARs, often spanning entire chromosomes. The presence of specific ARs influences the host range, and horizontal transfer of ARs can modify the pathogenicity of the receiving strain. However, how these ARs evolve in strains that infect the same host remains largely unknown. We defined the pan-genome of 69 diverse F. oxysporum strains that cause Fusarium wilt of banana, a significant constraint to global banana production, and analyzed the diversity and evolution of the ARs. Accessory regions in F. oxysporum strains infecting the same banana cultivar are highly diverse, and we could not identify any shared genomic regions and in planta-induced effectors. We demonstrate that segmental duplications drive the evolution of ARs. Furthermore, we show that recent segmental duplications specifically in accessory chromosomes cause the expansion of ARs in F. oxysporum. Taken together, we conclude that extensive recent duplications drive the evolution of ARs in F. oxysporum, which contribute to the evolution of virulence.


Assuntos
Fusarium , Genoma Fúngico , Duplicações Segmentares Genômicas , Fusarium/genética , Especificidade de Hospedeiro , Genômica , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
2.
Theor Appl Genet ; 123(4): 555-69, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21611761

RESUMO

We describe the application of complexity reduction of polymorphic sequences (CRoPS(®)) technology for the discovery of SNP markers in tetraploid durum wheat (Triticum durum Desf.). A next-generation sequencing experiment was carried out on reduced representation libraries obtained from four durum cultivars. SNP validation and minor allele frequency (MAF) estimate were carried out on a panel of 12 cultivars, and the feasibility of genotyping these SNPs in segregating populations was tested using the Illumina Golden Gate (GG) technology. A total of 2,659 SNPs were identified on 1,206 consensus sequences. Among the 768 SNPs that were chosen irrespective of their genomic repetitiveness level and assayed on the Illumina BeadExpress genotyping system, 275 (35.8%) SNPs matched the expected genotypes observed in the SNP discovery phase. MAF data indicated that the overall SNP informativeness was high: a total of 196 (71.3%) SNPs had MAF >0.2, of which 76 (27.6%) showed MAF >0.4. Of these SNPs, 157 were mapped in one of two mapping populations (Meridiano × Claudio and Colosseo × Lloyd) and integrated into a common genetic map. Despite the relatively low genotyping efficiency of the GG assay, the validated CRoPS-derived SNPs showed valuable features for genomics and breeding applications such as a uniform distribution across the wheat genome, a prevailing single-locus codominant nature and a high polymorphism. Here, we report a new set of 275 highly robust genome-wide Triticum SNPs that are readily available for breeding purposes.


Assuntos
Genoma de Planta , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Polimorfismo de Nucleotídeo Único , Triticum/genética , Cruzamento , Mapeamento Cromossômico , Cruzamentos Genéticos , DNA de Plantas/genética , Frequência do Gene , Marcadores Genéticos , Técnicas de Genotipagem , Análise de Sequência de DNA , Tetraploidia
3.
Evol Appl ; 4(5): 648-59, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25568012

RESUMO

Gene escape from crops has gained much attention in the last two decades, as transgenes introgressing into wild populations could affect the latter's ecological characteristics. However, different genes have different likelihoods of introgression. The mixture of selective forces provided by natural conditions creates an adaptive mosaic of alleles from both parental species. We investigated segregation patterns after hybridization between lettuce (Lactuca sativa) and its wild relative, L. serriola. Three generations of hybrids (S1, BC1, and BC1S1) were grown in habitats mimicking the wild parent's habitat. As control, we harvested S1 seedlings grown under controlled conditions, providing very limited possibility for selection. We used 89 AFLP loci, as well as more recently developed dominant markers, 115 retrotransposon markers (SSAP), and 28 NBS loci linked to resistance genes. For many loci, allele frequencies were biased in plants exposed to natural field conditions, including over-representation of crop alleles for various loci. Furthermore, Linkage disequilibrium was locally changed, allegedly by selection caused by the natural field conditions, providing ample opportunity for genetic hitchhiking. Our study indicates that when developing genetically modified crops, a judicious selection of insertion sites, based on knowledge of selective (dis)advantages of the surrounding crop genome under field conditions, could diminish transgene persistence.

4.
Theor Appl Genet ; 118(4): 741-51, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19048224

RESUMO

In hybrid breeding, the prediction of hybrid performance (HP) is extremely important as it is difficult to evaluate inbred lines in numerous cross combinations. Recent developments such as doubled haploid production and molecular marker technologies have enhanced the prospects of marker-based HP prediction to accelerate the breeding process. Our objectives were to (1) predict HP using a combined analysis of hybrids and parental lines from a breeding program, (2) evaluate the use of molecular markers in addition to phenotypic and pedigree data, (3) evaluate the combination of line per se data with marker-based estimates, (4) study the effect of the number of tested parents, and (5) assess the advantage of haplotype blocks. An unbalanced dataset of 400 hybrids from 9 factorial crosses tested in different experiments and data of 79 inbred parents were subjected to combined analyses with a mixed linear model. Marker data of the inbreds were obtained with 20 AFLP primer-enzyme combinations. Cross-validation was used to assess the performance prediction of hybrids of which no or only one parental line was testcross evaluated. For HP prediction, the highest proportion of explained variance (R (2)), 46% for grain yield (GY) and 70% for grain dry matter content (GDMC), was obtained from line per se best linear unbiased prediction (BLUP) estimates plus marker effects associated with mid-parent heterosis (TEAM-LM). Our study demonstrated that HP was efficiently predicted using molecular markers even for GY when testcross data of both parents are not available. This can help in improving greatly the efficiency of commercial hybrid breeding programs.


Assuntos
Cruzamento/métodos , Marcadores Genéticos/genética , Hibridização Genética , Zea mays/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Biometria , Cruzamentos Genéticos , Modelos Biológicos , Fenótipo , Zea mays/crescimento & desenvolvimento
5.
Theor Appl Genet ; 112(3): 517-27, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16341837

RESUMO

Molecular markers based upon a novel lettuce LTR retrotransposon and the nucleotide binding site-leucine-rich repeat (NBS-LRR) family of disease resistance-associated genes have been combined with AFLP markers to generate a 458 locus genetic linkage map for lettuce. A total of 187 retrotransposon-specific SSAP markers, 29 NBS-LRR markers and 242 AFLP markers were mapped in an F(2) population, derived from an interspecific cross between a Lactuca sativa cultivar commonly used in Europe and a wild Lactuca serriola isolate from Northern Europe. The cross has been designed to aid efforts to assess gene flow from cultivated lettuce into the wild in the perspective of genetic modification biosafety. The markers were mapped in nine major and one minor linkage groups spanning 1,266.1 cM, with an average distance of 2.8 cM between adjacent mapped markers. The markers are well distributed throughout the lettuce genome, with limited clustering of different marker types. Seventy-seven of the AFLP markers have been mapped previously and cross-comparison shows that the map from this study corresponds well with the previous linkage map.


Assuntos
Mapeamento Cromossômico , Ligação Genética , Lactuca/genética , Repetições de Microssatélites , Técnica de Amplificação ao Acaso de DNA Polimórfico , Cromossomos de Plantas , Cruzamentos Genéticos , DNA de Plantas , Marcadores Genéticos , Genoma de Planta , Elementos Nucleotídeos Longos e Dispersos , Sequências Repetidas Terminais
6.
Trends Plant Sci ; 10(10): 466-71, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16154381

RESUMO

In the rapidly growing field of association mapping in plants, the use of (marker) haplotypes rather than single markers can be an effective way of improving detection power. Here, we highlight the information that can be obtained from deducing the historical relationships between haplotypes. The ordering of haplotype classes according to deduced historical relationships should further enhance association detection power, but can also be used to predict the genotypic and phenotypic values of unobserved germplasm.


Assuntos
Haplótipos/genética , Plantas/genética , Marcadores Genéticos/genética , Variação Genética/genética , Desequilíbrio de Ligação
7.
Genetics ; 171(3): 1341-52, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16085696

RESUMO

In the quest for fine mapping quantitative trait loci (QTL) at a subcentimorgan scale, several methods that involve the construction of inbred lines and the generation of large progenies of such inbred lines have been developed (Complex Trait Consortium 2003). Here we present an alternative method that significantly speeds up QTL fine mapping by using one segregating population. As a first step, a rough mapping analysis is performed on a small part of the population. Once the QTL have been mapped to a chromosomal interval by standard procedures, a large population of 1000 plants or more is analyzed with markers flanking the defined QTL to select QTL isogenic recombinants (QIRs). QIRs bear a recombination event in the QTL interval of interest, while other QTL have the same homozygous genotype. Only these QIRs are subsequently phenotyped to fine map the QTL. By focusing at an early stage on the informative individuals in the population only, the efforts in population genotyping and phenotyping are significantly reduced as compared to prior methods. The principles of this approach are demonstrated by fine mapping an erucic acid QTL of rapeseed at a subcentimorgan scale.


Assuntos
Brassica rapa/genética , Mapeamento Cromossômico/estatística & dados numéricos , Locos de Características Quantitativas , Brassica rapa/metabolismo , Ácidos Erúcicos/metabolismo , Marcadores Genéticos , Genética Populacional/estatística & dados numéricos , Recombinação Genética , Tamanho da Amostra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...