Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plast Reconstr Surg ; 144(3): 397e-408e, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31461016

RESUMO

BACKGROUND: Cell-enrichment of fat grafts has produced encouraging results, but the optimal concentrations and types of added cells are unknown. The authors investigated the effects of enrichment with various concentrations of ex vivo-expanded adipose-derived stem/stromal cells and stromal vascular fraction on graft retention in a porcine model. METHODS: Adipose-derived stem/stromal cells were culture-expanded, and six fat grafts (30 ml) were prepared for each minipig (n = 13). The authors investigated grafts enriched with 2.5 × 10 to 20 × 10 adipose-derived stem cells/ml and stromal vascular fraction and nonenriched control grafts. Each pig served as its own control. Magnetic resonance imaging was performed immediately after grafting and 120 days postoperatively before the pigs were euthanized, and histologic samples were collected. RESULTS: The authors recorded an enhanced relative graft retention rate of 41 percent in a pool of all cell-enriched grafts compared to the nonenriched control (13.0 percent versus 9.2 percent; p = 0.0045). A comparison of all individual groups showed significantly higher graft retention in the 10 × 10-adipose-derived stem/stromal cells per milliliter group compared with the control group (p = 0.022). No significant differences were observed between the cell-enriched groups (p = 0.66). All fat grafts showed a significantly better resemblance to normal fat tissue in the periphery than in the center (p < 0.009), but no differences in overall graft morphology were observed between groups (p > 0.17). CONCLUSIONS: Cell-enriched fat grafting improved graft retention and was feasible in this porcine model. No significant differences in graft retention were observed among the various adipose-derived stem/stromal cell concentrations or between adipose-derived stem/stromal cell and stromal vascular fraction enrichment. Future studies using this model can help improve understanding of the role of adipose-derived stem/stromal cells in cell-enriched fat grafting.


Assuntos
Tecido Adiposo/transplante , Transplante de Células-Tronco/métodos , Células Estromais/transplante , Tecido Adiposo/irrigação sanguínea , Tecido Adiposo/citologia , Animais , Autoenxertos/citologia , Autoenxertos/diagnóstico por imagem , Contagem de Células , Estudos de Viabilidade , Sobrevivência de Enxerto , Imageamento por Ressonância Magnética , Modelos Animais , Suínos , Porco Miniatura , Transplante Autólogo
2.
Plast Reconstr Surg Glob Open ; 6(4): e1735, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29876178

RESUMO

BACKGROUND: Cell-enriched fat grafting has shown promising results for improving graft survival, although many questions remain unanswered. A large animal model is crucial for bridging the gap between rodent studies and human trials. We present a step-by-step approach in using the Göttingen minipig as a model for future studies of cell-enriched large volume fat grafting. METHODS: Fat grafting was performed as bolus injections and structural fat grafting. Graft retention was assessed by magnetic resonance imaging after 120 days. The stromal vascular fraction (SVF) was isolated from excised fat and liposuctioned fat from different anatomical sites and analyzed. Porcine adipose-derived stem/stromal cells (ASCs) were cultured in different growth supplements, and population doubling time, maximum cell yield, expression of surface markers, and differentiation potential were investigated. RESULTS: Structural fat grafting in the breast and subcutaneous bolus grafting in the abdomen revealed average graft retention of 53.55% and 15.28%, respectively, which are similar to human reports. Liposuction yielded fewer SVF cells than fat excision, and abdominal fat had the most SVF cells/g fat with SVF yields similar to humans. Additionally, we demonstrated that porcine ASCs can be readily isolated and expanded in culture in allogeneic porcine platelet lysate and fetal bovine serum and that the use of 10% porcine platelet lysate or 20% fetal bovine serum resulted in population doubling time, maximum cell yield, surface marker profile, and trilineage differentiation that were comparable with humans. CONCLUSIONS: The Göttingen minipig is a feasible and cost-effective, large animal model for future translational studies of cell-enriched fat grafting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...