Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 173, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597967

RESUMO

Heterozygous mutations in any of three major genes, BRCA1, BRCA2 and PALB2, are associated with high-risk hereditary breast cancer susceptibility frequently seen as familial disease clustering. PALB2 is a key interaction partner and regulator of several vital cellular activities of BRCA1 and BRCA2, and is thus required for DNA damage repair and alleviation of replicative and oxidative stress. Little is however known about how PALB2-deficiency affects cell function beyond that, especially in the three-dimensional setting, and also about its role during early steps of malignancy development. To answer these questions, we have generated biologically relevant MCF10A mammary epithelial cell lines with mutations that are comparable to certain clinically important PALB2 defects. We show in a non-cancerous background how both mono- and biallelically PALB2-mutated cells exhibit gross spontaneous DNA damage and mitotic aberrations. Furthermore, PALB2-deficiency disturbs three-dimensional spheroid morphology, increases the migrational capacity and invasiveness of the cells, and broadly alters their transcriptome profiles. TGFß signaling and KRT14 expression are enhanced in PALB2-mutated cells and their inhibition and knock down, respectively, lead to partial restoration of cell functions. KRT14-positive cells are also more abundant with DNA damage than KRT14-negative cells. The obtained results indicate comprehensive cellular changes upon PALB2 mutations, even in the presence of half dosage of wild type PALB2 and demonstrate how PALB2 mutations may predispose their carriers to malignancy.


Assuntos
Neoplasias , Transdução de Sinais , Humanos , Reparo do DNA , Células Epiteliais , Mama , Proteína do Grupo de Complementação N da Anemia de Fanconi/genética
2.
Cancer Gene Ther ; 30(10): 1369-1381, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37495855

RESUMO

Radiotherapy is one of the most common cancer treatments, yet, some patients require high doses to respond. Therefore, the development of new strategies leans toward personalizing therapy to avoid unnecessary burden on cancer patients. This approach prevents the administration of ineffective treatments or uses combination strategies to increase the sensitivity of cancer cells. ADAM12 has been shown to be upregulated in many cancers and correlate with poor survival and chemoresistance, thus making it a potential candidate responsible for radioresistance. Here, we show that ADAM12 expression is upregulated in response to irradiation in both mouse and human cancer cells in vitro, as well as in tumor tissues from rectal cancer patients. Interestingly, the expression of ADAM12 following radiotherapy correlates with the initial disease stage and predicts the response of rectal cancer patients to the treatment. While we found no cell-autonomous effects of ADAM12 on the response of colon cancer cells to irradiation in vitro, depletion of ADAM12 expression markedly reduced the tumor growth of irradiated cancer cells when subcutaneously transplanted in syngeneic mice. Interestingly, loss of cancer cell-derived ADAM12 expression increased the number of CD31+FAP- cells in murine tumors. Moreover, conditioned medium from ADAM12-/- colon cancer cells led to increased tube formation when added to endothelial cell cultures. Thus, it is tempting to speculate that altered tumor vascularity may be implicated in the observed effect of ADAM12 on response to radiotherapy in rectal cancer. We conclude that ADAM12 represents a promising prognostic factor for stratification of rectal cancer patients receiving radiotherapy and suggest that targeting ADAM12 in combination with radiotherapy could potentially improve the treatment response.


Assuntos
Neoplasias do Colo , Neoplasias Retais , Animais , Humanos , Camundongos , Proteína ADAM12/genética , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/radioterapia , Regulação Neoplásica da Expressão Gênica , Prognóstico , Neoplasias Retais/genética , Neoplasias Retais/radioterapia
3.
NAR Cancer ; 5(3): zcad029, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37325550

RESUMO

Ovarian cancer is driven by genetic alterations that necessitate protective DNA damage and replication stress responses through cell cycle control and genome maintenance. This creates specific vulnerabilities that may be exploited therapeutically. WEE1 kinase is a key cell cycle control kinase, and it has emerged as a promising cancer therapy target. However, adverse effects have limited its clinical progress, especially when tested in combination with chemotherapies. A strong genetic interaction between WEE1 and PKMYT1 led us to hypothesize that a multiple low-dose approach utilizing joint WEE1 and PKMYT1 inhibition would allow exploitation of the synthetic lethality. We found that the combination of WEE1 and PKMYT1 inhibition exhibited synergistic effects in eradicating ovarian cancer cells and organoid models at a low dose. The WEE1 and PKMYT1 inhibition synergistically promoted CDK activation. Furthermore, the combined treatment exacerbated DNA replication stress and replication catastrophe, leading to increase of the genomic instability and inflammatory STAT1 signalling activation. These findings suggest a new multiple low-dose approach to harness the potency of WEE1 inhibition through the synthetic lethal interaction with PKMYT1 that may contribute to the development of new treatments for ovarian cancer.

4.
Nat Metab ; 5(4): 642-659, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37012496

RESUMO

Cancer cells fuel their increased need for nucleotide supply by upregulating one-carbon (1C) metabolism, including the enzymes methylenetetrahydrofolate dehydrogenase-cyclohydrolase 1 and 2 (MTHFD1 and MTHFD2). TH9619 is a potent inhibitor of dehydrogenase and cyclohydrolase activities in both MTHFD1 and MTHFD2, and selectively kills cancer cells. Here, we reveal that, in cells, TH9619 targets nuclear MTHFD2 but does not inhibit mitochondrial MTHFD2. Hence, overflow of formate from mitochondria continues in the presence of TH9619. TH9619 inhibits the activity of MTHFD1 occurring downstream of mitochondrial formate release, leading to the accumulation of 10-formyl-tetrahydrofolate, which we term a 'folate trap'. This results in thymidylate depletion and death of MTHFD2-expressing cancer cells. This previously uncharacterized folate trapping mechanism is exacerbated by physiological hypoxanthine levels that block the de novo purine synthesis pathway, and additionally prevent 10-formyl-tetrahydrofolate consumption for purine synthesis. The folate trapping mechanism described here for TH9619 differs from other MTHFD1/2 inhibitors and antifolates. Thus, our findings uncover an approach to attack cancer and reveal a regulatory mechanism in 1C metabolism.


Assuntos
Metilenotetra-Hidrofolato Desidrogenase (NADP) , Neoplasias , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Ácido Fólico/metabolismo , Formiatos , Purinas , Tetra-Hidrofolatos
5.
iScience ; 26(1): 105806, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36632060

RESUMO

Wee1-like protein kinase (WEE1) restrains activities of cyclin-dependent kinases (CDKs) in S and G2 phase. Inhibition of WEE1 evokes drastic increase in CDK activity, which perturbs replication dynamics and compromises cell cycle checkpoints. Notably, WEE1 inhibitors such as adavosertib are tested in cancer treatment trials; however, WEE1-regulated phosphoproteomes and their dynamics have not been systematically investigated. In this study, we identified acute time-resolved alterations in the cellular phosphoproteome following WEE1 inhibition with adavosertib. These treatments acutely elevated CDK activities with distinct phosphorylation dynamics revealing more than 600 potential uncharacterized CDK sites. Moreover, we identified a major role for WEE1 in controlling CDK-dependent phosphorylation of multiple clustered sites in the key DNA repair factors MDC1, 53BP1, and RIF1. Functional analysis revealed that WEE1 fine-tunes CDK activities to permit recruitment of 53BP1 to chromatin. Thus, our findings uncover WEE1-controlled targets and pathways with translational potential for the clinical application of WEE1 inhibitors.

6.
Nucleic Acids Res ; 50(17): 9948-9965, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36099415

RESUMO

Mutations in the lamin A/C gene (LMNA) cause laminopathies such as the premature aging Hutchinson Gilford progeria syndrome (HGPS) and altered lamin A/C levels are found in diverse malignancies. The underlying lamin-associated mechanisms remain poorly understood. Here we report that lamin A/C-null mouse embryo fibroblasts (Lmna-/- MEFs) and human progerin-expressing HGPS fibroblasts both display reduced NAD+ levels, unstable mitochondrial DNA and attenuated bioenergetics. This mitochondrial dysfunction is associated with reduced chromatin recruitment (Lmna-/- MEFs) or low levels (HGPS) of PGC1α, the key transcription factor for mitochondrial homeostasis. Lmna-/- MEFs showed reduced expression of the NAD+-biosynthesis enzyme NAMPT and attenuated activity of the NAD+-dependent deacetylase SIRT1. We find high PARylation in lamin A/C-aberrant cells, further decreasing the NAD+ pool and consistent with impaired DNA base excision repair in both cell models, a condition that fuels DNA damage-induced PARylation under oxidative stress. Further, ATAC-sequencing revealed a substantially altered chromatin landscape in Lmna-/- MEFs, including aberrantly reduced accessibility at the Nampt gene promoter. Thus, we identified a new role of lamin A/C as a key modulator of mitochondrial function through impairments of PGC1α and the NAMPT-NAD+ pathway, with broader implications for the aging process.


Assuntos
Lamina Tipo A/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Progéria , Animais , Cromatina/metabolismo , DNA Mitocondrial/metabolismo , Fibroblastos/metabolismo , Humanos , Lamina Tipo A/genética , Camundongos , Mitocôndrias/metabolismo , NAD/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Progéria/metabolismo , Sirtuína 1/genética
8.
Cell Rep ; 38(3): 110261, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35045293

RESUMO

Cellular feedback systems ensure genome maintenance during DNA replication. When replication forks stall, newly replicated DNA is protected by pathways that limit excessive DNA nuclease attacks. Here we show that WEE1 activity guards against nascent DNA degradation at stalled forks. Furthermore, we identify WEE1-dependent suppression of cyclin-dependent kinase 2 (CDK2) as a major activity counteracting fork degradation. We establish DNA2 as the nuclease responsible for excessive fork degradation in WEE1-inhibited cells. In addition, WEE1 appears to be unique among CDK activity suppressors in S phase because neither CHK1 nor p21 promote fork protection as WEE1 does. Our results identify a key role of WEE1 in protecting stalled forks, which is separate from its established role in safeguarding DNA replication initiation. Our findings highlight how WEE1 inhibition evokes massive genome challenges during DNA replication, and this knowledge may improve therapeutic strategies to specifically eradicate cancer cells that frequently harbor elevated DNA replication stress.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Replicação do DNA/fisiologia , Proteínas Tirosina Quinases/metabolismo , Linhagem Celular , Instabilidade Genômica/fisiologia , Humanos
9.
Breast Cancer Res Treat ; 191(2): 431-441, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34755241

RESUMO

PURPOSE: Decades of research have identified multiple genetic variants associated with breast cancer etiology. However, there is no database that archives breast cancer genes and variants responsible for predisposition. We set out to build a dynamic repository of curated breast cancer genes. METHODS: A comprehensive literature search was performed in PubMed and Google Scholar, followed by data extraction and harmonization for downstream analysis. RESULTS: Using a subset of 345 studies, we cataloged 652 breast cancer-associated loci across the genome. A majority of these were present in the non-coding region (i.e., intergenic (101) and intronic (345)), whereas only 158 were located within an exon. Using the odds ratio, we identified 429 loci to increase the disease risk and 198 to confer protection against breast cancer, whereas 25 were identified to both increase disease risk and confer protection against breast cancer. Chromosomal ideogram analysis indicated that chromosomes 17 and 19 have the highest density of breast cancer loci. We manually annotated and collated breast cancer genes in which a previous association between rare-monogenic variant and breast cancer has been documented. Finally, network and functional enrichment analysis revealed that steroid metabolism and DNA repair pathways were predominant among breast cancer genes and variants. CONCLUSIONS: We have built an online interactive catalog of curated breast cancer genes ( https://cbcg.dk ). This will expedite clinical diagnostics and support the ongoing efforts in managing breast cancer etiology. Moreover, the database will serve as an essential repository when designing new breast cancer multigene panels.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único
10.
Cells ; 9(11)2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182724

RESUMO

DNA-damaging cancer therapies induce interferon expression and stimulate the immune system, promoting therapy responses. The immune-activating STING (Stimulator of Interferon Genes) pathway is induced when DNA or double-stranded RNA (dsRNA) is detected in the cell cytoplasm, which can be caused by viral infection or by DNA damage following chemo- or radiotherapy. Here, we investigated the responses of cutaneous T-cell lymphoma (CTCL) cells to the clinically applied DNA crosslinking photochemotherapy (combination of 8-methoxypsoralen and UVA light; 8-MOP + UVA). We showed that this treatment evokes interferon expression and that the type III interferon IFNL1 is the major cytokine induced. IFNL1 upregulation is dependent on STING and on the cytoplasmic DNA sensor cyclic GMP-AMP synthase (cGAS). Furthermore, 8-MOP + UVA treatment induced the expression of genes in pathways involved in response to the tumor necrosis factor, innate immune system and acute inflammatory response. Notably, a subset of these genes was under control of the STING-IFNL1 pathway. In conclusion, our data connected DNA damage with immune system activation via the STING pathway and contributed to a better understanding of the effectiveness of photochemotherapy.


Assuntos
Dano ao DNA/fisiologia , Interferons/metabolismo , Fotoquimioterapia/métodos , Linhagem Celular Tumoral , Humanos , Transfecção , Interferon lambda
11.
Front Genet ; 11: 103, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32158468

RESUMO

Chromatin architecture is highly dynamic during different phases of cell cycle to accommodate DNA-based processes. This is particularly obvious during mitotic exit, where highly condensed rod-like chromatids need to be rapidly decondensed. Such chromatin structural transitions are tightly controlled and organized as any perturbance in this dynamic process can lead to genome dysfunction which may culminate in loss of cellular fitness. However, the mechanisms underlying cell cycle-dependent chromatin structural changes are not fully understood. In this mini review, we highlight our current knowledge of chromatin structural organization, focusing on mitotic exit. In this regard, we examine how nuclear processes are orchestrated during chromatin unfolding and compartmentalization and discuss the critical importance of cell cycle-controlled chromatin landscaping in maintaining genome integrity.

12.
Cell Mol Life Sci ; 77(4): 735-749, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31297568

RESUMO

During S phase, replication forks can encounter several obstacles that lead to fork stalling, which if persistent might result in fork collapse. To avoid this collapse and to preserve the competence to restart, cells have developed mechanisms that maintain fork stability upon replication stress. In this study, we aimed to understand the mechanisms involved in fork stability maintenance in non-transformed human cells by performing an isolation of proteins on nascent DNA-mass spectrometry analysis in hTERT-RPE cells under different replication stress conditions. Our results show that acute hydroxyurea-induced replication blockade causes the accumulation of large amounts of single-stranded DNA at the fork. Remarkably, this results in the disengagement of replisome components from nascent DNA without compromising fork restart. Notably, Cdc45-MCM-GINS helicase maintains its integrity and replisome components remain associated with chromatin upon acute hydroxyurea treatment, whereas replisome stability is lost upon a sustained replication stress that compromises the competence to restart.


Assuntos
Replicação do DNA/efeitos dos fármacos , Hidroxiureia/farmacologia , Linhagem Celular , DNA de Cadeia Simples/genética , Humanos , Fase S/efeitos dos fármacos
13.
EMBO J ; 38(20): e103421, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31566762

RESUMO

Marked cyclin protein oscillations over the cell cycle ensure tight regulation of all cell cycle transitions. Despite expression patterns closely mirroring those of cyclin A, cyclin F has long been regarded as an odd outlier within the cyclin family. Constituting part of an E3 ubiquitin ligase, its main role was seen as highly restricted to timely degradation of very few key substrates to ensure termination of one error-free round of replication. Now, a recent series of studies suggests that cyclin F has very similar roles as its closest relatives, merely mediated through a very different mechanism.


Assuntos
Proteínas de Ciclo Celular , Ciclinas , Ciclo Celular , Fatores de Transcrição E2F , Proteólise , Mutações Sintéticas Letais , Fatores de Transcrição
14.
Cancer Cell ; 35(6): 821-822, 2019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-31185206

RESUMO

Combined inhibitions of PARP and DNA damage checkpoint have the potential for high anti-cancer efficacy, but concurrent inhibitions have been hampered by intolerable side effects. In this issue of Cancer Cell, Fang and colleagues (Fang et al., 2019) propose that sequential inhibitions of PARP and DNA damage checkpoint considerably widen the therapeutic window.


Assuntos
Neoplasias , Inibidores de Poli(ADP-Ribose) Polimerases , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular , Humanos , Proteínas Nucleares , Proteínas Tirosina Quinases
15.
APMIS ; 127(5): 303-315, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30689231

RESUMO

Breast cancer was the first to take advantage of targeted therapy using endocrine therapy, and for up to 20% of all breast cancer patients a further significant improvement has been obtained by HER2-targeted therapy. Greater insight in precision medicine is to some extent driven by technical and computational progress, with the first wave of a true technical advancement being the application of transcriptomic analysis. Molecular subtyping further improved our understanding of breast cancer biology and has through a new tumor classification enabled allocation of personalized treatment regimens. The next wave in technical progression must be next-generation-sequencing which is currently providing new and exciting results. Large-scale sequencing data unravel novel somatic and potential targetable mutations as well as allowing the identification of new candidate genes predisposing for familial breast cancer. So far, around 15% of all breast cancer patients are genetically predisposed with most genes being factors in pathways implicated in genome maintenance. This review focuses on whole-genome sequencing and the new possibilities that this technique, together with other high-throughput analytic approaches, provides for a more individualized treatment course of breast cancer patients.


Assuntos
Neoplasias da Mama/genética , Sequenciamento Completo do Genoma/métodos , Reparo de Erro de Pareamento de DNA , Feminino , Genes BRCA1 , Genes BRCA2 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Medicina de Precisão
16.
Nucleic Acids Res ; 46(22): e135, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30215776

RESUMO

Analysis of large-scale interphase genome positioning with reference to a nuclear landmark has recently been studied using sequencing-based single cell approaches. However, these approaches are dependent upon technically challenging, time consuming and costly high throughput sequencing technologies, requiring specialized bioinformatics tools and expertise. Here, we propose a novel, affordable and robust microscopy-based single cell approach, termed Topokaryotyping, to analyze and reconstruct the interphase positioning of genomic loci relative to a given nuclear landmark, detectable as banding pattern on mitotic chromosomes. This is accomplished by proximity-dependent histone labeling, where biotin ligase BirA fused to nuclear envelope marker Emerin was coexpressed together with Biotin Acceptor Peptide (BAP)-histone fusion followed by (i) biotin labeling, (ii) generation of mitotic spreads, (iii) detection of the biotin label on mitotic chromosomes and (iv) their identification by karyotyping. Using Topokaryotyping, we identified both cooperativity and stochasticity in the positioning of emerin-associated chromatin domains in individual cells. Furthermore, the chromosome-banding pattern showed dynamic changes in emerin-associated domains upon physical and radiological stress. In summary, Topokaryotyping is a sensitive and reliable technique to quantitatively analyze spatial positioning of genomic regions interacting with a given nuclear landmark at the single cell level in various experimental conditions.


Assuntos
Cariotipagem/métodos , Mitose , Membrana Nuclear/metabolismo , Análise de Célula Única/métodos , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Células HEK293 , Células HeLa , Histonas/metabolismo , Humanos , Hibridização in Situ Fluorescente , Interfase , Proteínas de Membrana/metabolismo , Microscopia Confocal , Membrana Nuclear/genética , Proteínas Nucleares/metabolismo , Reprodutibilidade dos Testes
17.
Genome Biol ; 19(1): 37, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29548335

RESUMO

BACKGROUND: Genomic instability promotes evolution and heterogeneity of tumors. Unraveling its mechanistic basis is essential for the design of appropriate therapeutic strategies. In a previous study, we reported an unexpected oncogenic property of p21WAF1/Cip1, showing that its chronic expression in a p53-deficient environment causes genomic instability by deregulation of the replication licensing machinery. RESULTS: We now demonstrate that p21WAF1/Cip1 can further fuel genomic instability by suppressing the repair capacity of low- and high-fidelity pathways that deal with nucleotide abnormalities. Consequently, fewer single nucleotide substitutions (SNSs) occur, while formation of highly deleterious DNA double-strand breaks (DSBs) is enhanced, crafting a characteristic mutational signature landscape. Guided by the mutational signatures formed, we find that the DSBs are repaired by Rad52-dependent break-induced replication (BIR) and single-strand annealing (SSA) repair pathways. Conversely, the error-free synthesis-dependent strand annealing (SDSA) repair route is deficient. Surprisingly, Rad52 is activated transcriptionally in an E2F1-dependent manner, rather than post-translationally as is common for DNA repair factor activation. CONCLUSIONS: Our results signify the importance of mutational signatures as guides to disclose the repair history leading to genomic instability. We unveil how chronic p21WAF1/Cip1 expression rewires the repair process and identifies Rad52 as a source of genomic instability and a candidate therapeutic target.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Reparo do DNA , Instabilidade Genômica , Mutação , Proteína Rad52 de Recombinação e Reparo de DNA/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Linhagem Celular , DNA/biossíntese , Humanos
18.
Int J Mol Sci ; 18(7)2017 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-28698521

RESUMO

Genomic DNA is compacted into chromatin through packaging with histone and non-histone proteins. Importantly, DNA accessibility is dynamically regulated to ensure genome stability. This is exemplified in the response to DNA damage where chromatin relaxation near genomic lesions serves to promote access of relevant enzymes to specific DNA regions for signaling and repair. Furthermore, recent data highlight genome maintenance roles of chromatin through the regulation of endogenous DNA-templated processes including transcription and replication. Here, we review research that shows the importance of chromatin structure regulation in maintaining genome integrity by multiple mechanisms including facilitating DNA repair and directly suppressing endogenous DNA damage.


Assuntos
Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Animais , Montagem e Desmontagem da Cromatina/genética , Montagem e Desmontagem da Cromatina/fisiologia , Dano ao DNA/genética , Reparo do DNA/genética , Replicação do DNA/genética , Replicação do DNA/fisiologia , Instabilidade Genômica/genética , Instabilidade Genômica/fisiologia , Humanos
19.
Nat Rev Cancer ; 16(9): 599-612, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27515922

RESUMO

Genetic abnormalities in the DNA repair genes BRCA1 and BRCA2 predispose to hereditary breast and ovarian cancer (HBOC). However, only approximately 25% of cases of HBOC can be ascribed to BRCA1 and BRCA2 mutations. Recently, exome sequencing has uncovered substantial locus heterogeneity among affected families without BRCA1 or BRCA2 mutations. The new pathogenic variants are rare, posing challenges to estimation of risk attribution through patient cohorts. In this Review article, we examine HBOC genes, focusing on their role in genome maintenance, the possibilities for functional testing of putative causal variants and the clinical application of new HBOC genes in cancer risk management and treatment decision-making.


Assuntos
Neoplasias da Mama/genética , Genes Neoplásicos , Síndromes Neoplásicas Hereditárias/genética , Neoplasias Ovarianas/genética , Apoptose/genética , Neoplasias da Mama Masculina/genética , Ciclo Celular/genética , Dano ao DNA , Reparo de Erro de Pareamento de DNA/genética , Estrogênios , Feminino , Genes cdc , Aconselhamento Genético , Predisposição Genética para Doença , Testes Genéticos , Humanos , Masculino , Mutação de Sentido Incorreto , Neoplasias Hormônio-Dependentes/genética , Progesterona , Splicing de RNA/genética , Reparo de DNA por Recombinação/genética , Transdução de Sinais/genética
20.
Nat Cell Biol ; 18(7): 777-89, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27323328

RESUMO

The cyclin-dependent kinase inhibitor p21(WAF1/CIP1) (p21) is a cell-cycle checkpoint effector and inducer of senescence, regulated by p53. Yet, evidence suggests that p21 could also be oncogenic, through a mechanism that has so far remained obscure. We report that a subset of atypical cancerous cells strongly expressing p21 showed proliferation features. This occurred predominantly in p53-mutant human cancers, suggesting p53-independent upregulation of p21 selectively in more aggressive tumour cells. Multifaceted phenotypic and genomic analyses of p21-inducible, p53-null, cancerous and near-normal cellular models showed that after an initial senescence-like phase, a subpopulation of p21-expressing proliferating cells emerged, featuring increased genomic instability, aggressiveness and chemoresistance. Mechanistically, sustained p21 accumulation inhibited mainly the CRL4-CDT2 ubiquitin ligase, leading to deregulated origin licensing and replication stress. Collectively, our data reveal the tumour-promoting ability of p21 through deregulation of DNA replication licensing machinery-an unorthodox role to be considered in cancer treatment, since p21 responds to various stimuli including some chemotherapy drugs.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Replicação do DNA/genética , Instabilidade Genômica/genética , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/genética , Ciclinas/genética , Ciclinas/metabolismo , Humanos , Neoplasias/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...