Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 948, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36804936

RESUMO

Small molecule inhibitors of glycosylation enzymes are valuable tools for dissecting glycan functions and potential drug candidates. Screening for inhibitors of glycosyltransferases are mainly performed by in vitro enzyme assays with difficulties moving candidates to cells and animals. Here, we circumvent this by employing a cell-based screening assay using glycoengineered cells expressing tailored reporter glycoproteins. We focused on GalNAc-type O-glycosylation and selected the GalNAc-T11 isoenzyme that selectively glycosylates endocytic low-density lipoprotein receptor (LDLR)-related proteins as targets. Our screen of a limited small molecule compound library did not identify selective inhibitors of GalNAc-T11, however, we identify two compounds that broadly inhibited Golgi-localized glycosylation processes. These compounds mediate the reversible fragmentation of the Golgi system without affecting secretion. We demonstrate how these inhibitors can be used to manipulate glycosylation in cells to induce expression of truncated O-glycans and augment binding of cancer-specific Tn-glycoprotein antibodies and to inhibit expression of heparan sulfate and binding and infection of SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Glicosilação , SARS-CoV-2/metabolismo , Glicoproteínas/metabolismo , Polissacarídeos/metabolismo
2.
Plant Dis ; 103(10): 2634-2644, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31339440

RESUMO

Greenhouse cultivation of ornamentals is subjected to a high incidence of soil-borne fungal pathogens. In Kalanchoe, these pathogens are responsible for root and stem rot, and for infection of the vascular tissue. Well-known soil-borne pathogens are believed to cause these diseases. Yet, a systematized survey of these pathogens is lacking for Kalanchoe produced commercially. Here, we studied the occurrence of soil-borne fungal pathogens associated with cultivation of Kalanchoe in Denmark and production of cuttings and stock plants in greenhouse facilities located in Turkey and Vietnam. Molecular identification of pathogens complemented mycological identification and pathogenicity testing of the soil-borne fungal pathogens. This study revealed that the fungi Corynespora cassiicola, Thielaviopsis basicola, Fusarium solani, and F. oxysporum are the most prevalent pathogens associated with root and stem rotting and wilt of Kalanchoe under the conditions studied. Furthermore, the study showed that some of the pathogens are part of an infection complex comprising both primary and opportunistic fungal species. The fact that some of the pathogens were present in some regions, while absent in others, suggests how they move between greenhouse facilities on infected plant material. This study generated important information about the soil-borne fungal complex affecting Kalanchoe, which is useful for a better understanding of the biology of the disease and for designing control strategies.


Assuntos
Kalanchoe , Microbiologia do Solo , Dinamarca , Fungos/classificação , Fungos/genética , Kalanchoe/microbiologia , Doenças das Plantas/microbiologia , Prevalência , Turquia , Vietnã
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...