Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 24(1): 662-71, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26832296

RESUMO

We present 3.36 µm buried heterostructure distributed-feedback quantum cascade lasers with a power dissipation at threshold below 250 mW and operation temperatures as high as 130 °C. Threshold values below 20 mA at -10 °C in pulsed operation and 30 mA at -20 °C in continuous-wave operation are reported. Optical power above 130 mW and 13 mW are achieved at -20 °C in pulsed and continuous-wave operation, respectively. Continuous-wave operation occurs until 15 °C. We show single-mode emission in pulsed and continuous-wave operation. Single-mode performance is demonstrated in long pulse (5.56 µs) operation. The laser far-field exhibits a single lobe emission with full-width-half-max of 27 ° × 34 °.

2.
Proc Natl Acad Sci U S A ; 112(52): 15803-8, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26668362

RESUMO

The lanthanum-based materials, due to their layered structure and f-electron configuration, are relevant for electrochemical application. Particularly, La2O2CO3 shows a prominent chemoresistive response to CO2. However, surprisingly less is known about its atomic and electronic structure and electrochemically significant sites and therefore, its structure-functions relationships have yet to be established. Here we determine the position of the different constituents within the unit cell of monoclinic La2O2CO3 and use this information to interpret in situ high-energy resolution fluorescence-detected (HERFD) X-ray absorption near-edge structure (XANES) and valence-to-core X-ray emission spectroscopy (vtc XES). Compared with La(OH)3 or previously known hexagonal La2O2CO3 structures, La in the monoclinic unit cell has a much lower number of neighboring oxygen atoms, which is manifested in the whiteline broadening in XANES spectra. Such a superior sensitivity to subtle changes is given by HERFD method, which is essential for in situ studying of the interaction with CO2. Here, we study La2O2CO3-based sensors in real operando conditions at 250 °C in the presence of oxygen and water vapors. We identify that the distribution of unoccupied La d-states and occupied O p- and La d-states changes during CO2 chemoresistive sensing of La2O2CO3. The correlation between these spectroscopic findings with electrical resistance measurements leads to a more comprehensive understanding of the selective adsorption at La site and may enable the design of new materials for CO2 electrochemical applications.

3.
Nanoscale ; 6(21): 13213-21, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25255203

RESUMO

Texturing of magnetic ceramics and composites by aligning and fixing of colloidal particles in a magnetic field is a powerful strategy to induce anisotropic chemical, physical and especially mechanical properties into bulk materials. If porosity could be introduced, anisotropically structured magnetic materials would be the perfect supports for magnetic separations in biotechnology or for magnetic field-assisted chemical reactions. Aerogels, combining high porosity with nanoscale structural features, offer an exceptionally large surface area, but they are difficult to magnetically texture. Here we present the preparation of anatase-magnetite aerogel monoliths via the assembly of preformed nanocrystallites. Different approaches are proposed to produce macroscopic bodies with gradient-like magnetic segmentation or with strongly anisotropic magnetic texture.

4.
Angew Chem Int Ed Engl ; 53(26): 6823-6, 2014 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-24853124

RESUMO

Aerogels with their low density and high surface area are fascinating materials. However, their advantageous morphology is still far from being fully exploited owing to their limited compositional variety and low crystallinity. Replacing the sol-gel process by a particle-based assembly route is a powerful alternative to expand the accessible functionalities of aerogels. A strategy is presented for the controlled destabilization of concentrated dispersions of BaTiO3 nanoparticles, resulting in the assembly of the fully crystalline building blocks into cylindrically shaped monolithic gels, thereby combining the inherent properties of ternary oxides with the highly porous microstructure of aerogels. The obtained aerogels showed an unprecedentedly high surface area of over 300 m(2) g(-1).

5.
J Synchrotron Radiat ; 21(Pt 1): 111-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24365924

RESUMO

Strained semiconductors are ubiquitous in microelectronics and microelectromechanical systems, where high local stress levels can either be detrimental for their integrity or enhance their performance. Consequently, local probes for elastic strain are essential in analyzing such devices. Here, a scanning X-ray sub-microprobe experiment for the direct measurement of deformation over large areas in single-crystal thin films with a spatial resolution close to the focused X-ray beam size is presented. By scanning regions of interest of several tens of micrometers at different rocking angles of the sample in the vicinity of two Bragg reflections, reciprocal space is effectively mapped in three dimensions at each scanning position, obtaining the bending, as well as the in-plane and out-of-plane strain components. Highly strained large-area Ge structures with applications in optoelectronics are used to demonstrate the potential of this technique and the results are compared with finite-element-method models for validation.

6.
Nanoscale ; 5(18): 8517-25, 2013 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-23863978

RESUMO

We present a detailed study on the nonaqueous synthesis of tungstite nanostructures with the focus on crystallization processes and the evolution of particle morphology. Time-dependent transmission electron microscopy (TEM) revealed a complex, particle-based crystallization mechanism involving first the formation of spherical and single-crystalline primary particles of 2-8 nm, which are cross-linked to large and unordered agglomerates, followed by their organization into rod-like structures of 40 × 200-400 nm. These rods undergo an internal ordering process, during which crystallographically oriented stacks of platelets develop. In situ small angle X-ray scattering (SAXS) experiments confirm this pathway of particle formation. The scattering intensity is dominated by the fast formation of rod-like particles, which cause an inter-platelet peak in the SAXS pattern with ongoing internal ordering. With continuous reaction time, the platelet stacks start to fall apart forming shorter assemblies of just a few platelets or even single platelets.

7.
Nat Commun ; 3: 1265, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23232395

RESUMO

Heterogeneous composite materials with variable local stiffness are widespread in nature, but are far less explored in engineering structural applications. The development of heterogeneous synthetic composites with locally tuned elastic properties would allow us to extend the lifetime of functional devices with mechanically incompatible interfaces, and to create new enabling materials for applications ranging from flexible electronics to regenerative medicine. Here we show that heterogeneous composites with local elastic moduli tunable over five orders of magnitude can be prepared through the site-specific reinforcement of an entangled elastomeric matrix at progressively larger length scales. Using such a hierarchical reinforcement approach, we designed and produced composites exhibiting regions with extreme soft-to-hard transitions, while still being reversibly stretchable up to 350%. The implementation of the proposed methodology in a mechanically challenging application is illustrated here with the development of locally stiff and globally stretchable substrates for flexible electronics.

8.
Nanoscale ; 4(6): 1982-95, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22159429

RESUMO

Zinc oxide nanostructures are known to exist in a great variety of morphologies. However, the underlying mechanisms leading to these architectures are far from being fully understood. Here, we present a time dependent study of the generation of zinc oxide nanorods, which arrange into bundles with a fan- or bouquet-like structure, using the benzyl alcohol route. The structural evolution of the nanoparticles was monitored by electron microscopy techniques, whereas the progress of the chemical reaction was followed by quantification of the organic by-products using gas chromatography. With this study we give a detailed insight into the formation of the zinc oxide structures, which involves a complex pathway based on many in parallel occurring processes such as crystallization of primary particles, their oriented attachment and surface reconstruction inside the nanoparticulate agglomerates. However, in spite of such an intricate growth behavior, the ZnO nanostructures are surprisingly uniform in size and shape.


Assuntos
Álcool Benzílico/química , Cristalização/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Óxido de Zinco/química , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...