Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Signal ; 16(789): eadd3184, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37311034

RESUMO

The activation of at least 23 different mammalian kinases requires the phosphorylation of their hydrophobic motifs by the kinase PDK1. A linker connects the phosphoinositide-binding PH domain to the catalytic domain, which contains a docking site for substrates called the PIF pocket. Here, we used a chemical biology approach to show that PDK1 existed in equilibrium between at least three distinct conformations with differing substrate specificities. The inositol polyphosphate derivative HYG8 bound to the PH domain and disrupted PDK1 dimerization by stabilizing a monomeric conformation in which the PH domain associated with the catalytic domain and the PIF pocket was accessible. In the absence of lipids, HYG8 potently inhibited the phosphorylation of Akt (also termed PKB) but did not affect the intrinsic activity of PDK1 or the phosphorylation of SGK, which requires docking to the PIF pocket. In contrast, the small-molecule valsartan bound to the PIF pocket and stabilized a second distinct monomeric conformation. Our study reveals dynamic conformations of full-length PDK1 in which the location of the linker and the PH domain relative to the catalytic domain determines the selective phosphorylation of PDK1 substrates. The study further suggests new approaches for the design of drugs to selectively modulate signaling downstream of PDK1.


Assuntos
Mamíferos , Polifosfatos , Animais , Especificidade por Substrato , Fosforilação , Domínio Catalítico , Dimerização
2.
PLoS Comput Biol ; 14(12): e1006651, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30532261

RESUMO

An expanded chemical space is essential for improved identification of small molecules for emerging therapeutic targets. However, the identification of targets for novel compounds is biased towards the synthesis of known scaffolds that bind familiar protein families, limiting the exploration of chemical space. To change this paradigm, we validated a new pipeline that identifies small molecule-protein interactions and works even for compounds lacking similarity to known drugs. Based on differential mRNA profiles in multiple cell types exposed to drugs and in which gene knockdowns (KD) were conducted, we showed that drugs induce gene regulatory networks that correlate with those produced after silencing protein-coding genes. Next, we applied supervised machine learning to exploit drug-KD signature correlations and enriched our predictions using an orthogonal structure-based screen. As a proof-of-principle for this regimen, top-10/top-100 target prediction accuracies of 26% and 41%, respectively, were achieved on a validation of set 152 FDA-approved drugs and 3104 potential targets. We then predicted targets for 1680 compounds and validated chemical interactors with four targets that have proven difficult to chemically modulate, including non-covalent inhibitors of HRAS and KRAS. Importantly, drug-target interactions manifest as gene expression correlations between drug treatment and both target gene KD and KD of genes that act up- or down-stream of the target, even for relatively weak binders. These correlations provide new insights on the cellular response of disrupting protein interactions and highlight the complex genetic phenotypes of drug treatment. With further refinement, our pipeline may accelerate the identification and development of novel chemical classes by screening compound-target interactions.


Assuntos
Descoberta de Drogas/métodos , Perfilação da Expressão Gênica/métodos , Proteínas/química , Proteínas/efeitos dos fármacos , Linhagem Celular , Biologia Computacional , Simulação por Computador , Bases de Dados de Ácidos Nucleicos/estatística & dados numéricos , Descoberta de Drogas/estatística & dados numéricos , Avaliação Pré-Clínica de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/estatística & dados numéricos , Perfilação da Expressão Gênica/estatística & dados numéricos , Técnicas de Silenciamento de Genes , Ontologia Genética , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas/genética , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Wortmanina/química , Wortmanina/farmacologia , Proteínas ras/antagonistas & inibidores , Proteínas ras/química , Proteínas ras/genética
3.
ACS Chem Biol ; 13(8): 1921-1931, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29927572

RESUMO

The Polo-like kinases (Plks) are an evolutionary conserved family of Ser/Thr protein kinases that possess, in addition to the classical kinase domain at the N-terminus, a C-terminal polo-box domain (PBD) that binds to phosphorylated proteins and modulates the kinase activity and its localization. Plk1, which regulates the formation of the mitotic spindle, has emerged as a validated drug target for the treatment of cancer, because it is required for numerous types of cancer cells but not for the cell division in noncancer cells. Here, we employed chemical biology methods to investigate the allosteric communication between the PBD and the catalytic domain of Plk1. We identified small compounds that bind to the catalytic domain and inhibit or enhance the interaction of Plk1 with the phosphorylated peptide PoloBoxtide in vitro. In cells, two new allosteric Plk1 inhibitors affected the proliferation of cancer cells in culture and the cell cycle but had distinct phenotypic effects on spindle formation. Both compounds inhibited Plk1 signaling, indicating that they specifically act on Plk1 in cultured cells.


Assuntos
Proteínas de Ciclo Celular/agonistas , Proteínas de Ciclo Celular/antagonistas & inibidores , Ativadores de Enzimas/química , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/agonistas , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Regulação Alostérica/efeitos dos fármacos , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Domínio Catalítico , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Centrossomo/metabolismo , Ativadores de Enzimas/farmacologia , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células HeLa , Humanos , Cinetocoros/metabolismo , Oligopeptídeos/química , Fosfopeptídeos/química , Fosfopeptídeos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Spodoptera/química , Quinase 1 Polo-Like
4.
ACS Chem Biol ; 12(2): 564-573, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28045490

RESUMO

There is a current and pressing need for improved cancer therapies. The use of small molecule kinase inhibitors and their application in combinatorial regimens represent an approach to personalized targeted cancer therapy. A number of AGC kinases, including atypical Protein Kinase C enzymes (PKCs), are validated drug targets for cancer treatment. Most drug development programs for protein kinases focus on the development of drugs that bind at the ATP-binding site. Alternatively, allosteric drugs have great potential for the development of future innovative drugs. However, the rational development of allosteric drugs poses important challenges because the compounds not only must bind to a given site but also must stabilize forms of the protein with a desired effect at a distant site. Here we describe the development of a new class of compounds targeting a regulatory site (PIF-pocket) present in the kinase domain and provide biochemical and crystallographic data showing that these compounds allosterically inhibit the activity of atypical PKCs. PS432, a representative compound, decreased the rate of proliferation of non-small cell lung cancer cells more potently than aurothiomalate, an atypical PKCι inhibitor currently under evaluation in clinical trials, and significantly reduced tumor growth without side effects in a mouse xenograft model. The druglike chemical class provides ample possibilities for the synthesis of derivative compounds, with the potential to allosterically modulate the activity of atypical PKCs and other kinases.


Assuntos
Isoenzimas/metabolismo , Proteína Quinase C/metabolismo , Regulação Alostérica , Animais , Linhagem Celular Tumoral , Feminino , Xenoenxertos , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus
5.
Cell Chem Biol ; 23(10): 1193-1205, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27693059

RESUMO

Allostery is a phenomenon observed in many proteins where binding of a macromolecular partner or a small-molecule ligand at one location leads to specific perturbations at a site not in direct contact with the region where the binding occurs. The list of proteins under allosteric regulation includes AGC protein kinases. AGC kinases have a conserved allosteric site, the phosphoinositide-dependent protein kinase 1 (PDK1)-interacting fragment (PIF) pocket, which regulates protein ATP-binding, activity, and interaction with substrates. In this study, we identify small molecules that bind to the ATP-binding site and affect the PIF pocket of AGC kinase family members, PDK1 and Aurora kinase. We describe the mechanistic details and show that although PDK1 and Aurora kinase inhibitors bind to the conserved ATP-binding site, they differentially modulate physiological interactions at the PIF-pocket site. Our work outlines a strategy for developing bidirectional small-molecule allosteric modulators of protein kinases and other signaling proteins.


Assuntos
Trifosfato de Adenosina/metabolismo , Regulação Alostérica/efeitos dos fármacos , Indazóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Pirimidinas/farmacologia , Sítio Alostérico/efeitos dos fármacos , Aurora Quinases/antagonistas & inibidores , Aurora Quinases/química , Aurora Quinases/metabolismo , Sítios de Ligação/efeitos dos fármacos , Células HEK293 , Humanos , Indazóis/química , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Pirimidinas/química , Piruvato Desidrogenase Quinase de Transferência de Acetil
6.
Biochim Biophys Acta ; 1861(3): 249-59, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26743850

RESUMO

Pkh is the yeast ortholog of the mammalian 3-phosphoinositide-dependent protein kinase 1 (PDK1). Pkh phosphorylates the activation loop of Ypks, Tpks, Sch9 and also phosphorylates the eisosome components Lsp1 and Pil1, which play fundamental roles upstream of diverse signaling pathways, including the cell wall integrity and sphingosine/long-chain base (LCB) signaling pathways. In S. cerevisiae, two isoforms, ScPkh1 and ScPkh2, are required for cell viability, while only one ortholog exists in C. albicans, CaPkh2. In spite of the extensive information gathered on the role of Pkh in the LCB signaling, the yeast Pkh kinases are not known to bind lipids and previous studies did not identify PH domains in Pkh sequences. We now describe that the C-terminal region of CaPkh2 is required for its intrinsic kinase activity. In addition, we found that the C-terminal region of CaPkh2 enables its interaction with structural and signaling lipids. Our results further show that phosphatidylserine, phosphatidic acid, phosphatidylinositol (3,4 and 4,5)-biphosphates, and phosphatidylinositol (3,4,5)-trisphosphate inhibit Pkh activity, whereas sulfatide binds with high affinity but does not affect the intrinsic activity of CaPkh2. Interestingly, we identified that its human ortholog PDK1 also binds to sulfatide. We propose a mechanism by which lipids and dihydrosphingosine regulate CaPkh2 kinase activity by modulating the interaction of the C-terminal region with the kinase domain, while sulfatide-like lipids support localization CaPkh2 mediated by a C-terminal PH domain, without affecting kinase intrinsic activity.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Candida albicans/enzimologia , Proteínas Fúngicas/metabolismo , Metabolismo dos Lipídeos , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Sequência de Aminoácidos , Sítios de Ligação , Candida albicans/genética , Biologia Computacional , Células HEK293 , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ácidos Fosfatídicos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilserinas/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Relação Estrutura-Atividade , Sulfoglicoesfingolipídeos/metabolismo , Transfecção
7.
Angew Chem Int Ed Engl ; 54(47): 13933-6, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26385475

RESUMO

The rational design of allosteric kinase modulators is challenging but rewarding. The protein kinase PDK1, which lies at the center of the growth-factor signaling pathway, possesses an allosteric regulatory site previously validated both in vitro and in cells. ANCHOR.QUERY software was used to discover a potent allosteric PDK1 kinase modulator. Using a recently published PDK1 compound as a template, several new scaffolds that bind to the allosteric target site were generated and one example was validated. The inhibitor can be synthesized in one step by multicomponent reaction (MCR) chemistry when using the ANCHOR.QUERY approach. Our results are significant because the outlined approach allows rapid and efficient scaffold hopping from known molecules into new easily accessible and biologically active ones. Based on increasing interest in allosteric-site drug discovery, we foresee many potential applications for this approach.


Assuntos
Descoberta de Drogas/métodos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Regulação Alostérica/efeitos dos fármacos , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Software
8.
ACS Chem Biol ; 8(10): 2283-92, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-23911092

RESUMO

The phosphoinositide-dependent protein kinase 1, PDK1, is a master kinase that phosphorylates the activation loop of up to 23 AGC kinases. S. cerevisiae has three PDK1 orthologues, Pkh1-3, which also phosphorylate AGC kinases (e.g., Ypk, Tpk, Pkc1, and Sch9). Pkh1 and 2 are redundant proteins involved in multiple essential cellular functions, including endocytosis and cell wall integrity. Based on similarities with the budding yeast, the Pkh of fungal infectious species was postulated as a novel target for antifungals. Here, we found that depletion of Pkh eventually induces oxidative stress and DNA double-strand breaks, leading to programmed cell death. This finding supports Pkh as an antifungal target since pharmacological inhibition of Pkh would lead to the death of yeast cells, the ultimate goal of antifungals. It was therefore of interest to further investigate the possibility to develop Pkh inhibitors with selectivity for Candida Pkh that would not inhibit the human ortholog. Here, we describe C. albicans Pkh2 biochemically, structurally and by using chemical probes in comparison to human PDK1. We found that a regulatory site on the C. albicans Pkh2 catalytic domain, the PIF-pocket, diverges from human PDK1. Indeed, we identified and characterized PS77, a new small allosteric inhibitor directed to the PIF-pocket, which has increased selectivity for C. albicans Pkh2. Together, our results describe novel features of the biology of Pkh and chemical biology approaches that support the validation of Pkh as a drug target for selective antifungals.


Assuntos
Candida albicans/efeitos dos fármacos , Chalconas/farmacologia , Sistemas de Liberação de Medicamentos , Modelos Moleculares , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/química , Receptores de Neurotransmissores/metabolismo , Tioglicolatos/farmacologia , Regulação Alostérica , Antifúngicos/química , Antifúngicos/farmacologia , Sítios de Ligação , Candida albicans/enzimologia , Chalconas/química , Ativação Enzimática/efeitos dos fármacos , Humanos , Inibidores de Proteínas Quinases/química , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio , Tioglicolatos/química
9.
Chem Biol ; 18(11): 1463-73, 2011 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-22118680

RESUMO

Protein kinases are key mediators of cellular signaling, and therefore, their activities are tightly controlled. AGC kinases are regulated by phosphorylation and by N- and C-terminal regions. Here, we studied the molecular mechanism of inhibition of atypical PKCζ and found that the inhibition by the N-terminal region cannot be explained by a simple pseudosubstrate inhibitory mechanism. Notably, we found that the C1 domain allosterically inhibits PKCζ activity and verified an allosteric communication between the PIF-pocket of atypical PKCs and the binding site of the C1 domain. Finally, we developed low-molecular-weight compounds that bind to the PIF-pocket and allosterically inhibit PKCζ activity. This work establishes a central role for the PIF-pocket on the regulation of PKCζ and allows us to envisage development of drugs targeting the PIF-pocket that can either activate or inhibit AGC kinases.


Assuntos
Proteína Quinase C/química , Bibliotecas de Moléculas Pequenas/química , Regulação Alostérica/efeitos dos fármacos , Sítios de Ligação , Biocatálise , Linhagem Celular Tumoral , Humanos , NF-kappa B/metabolismo , Proteína Quinase C/metabolismo , Estrutura Terciária de Proteína , Transdução de Sinais , Bibliotecas de Moléculas Pequenas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...