Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Enzyme Microb Technol ; 136: 109512, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32331717

RESUMO

A textile-based reaction system for new peroxidase reactions in non-native media was implemented. The epoxidation of cyclohexene by the commercial peroxidase MaxiBright® was realized with the textile-immobilized enzyme in an adapted liquid-liquid two-phase reactor. A commercially available polyester felt was used as low-price carrier and functionalized with polyvinyl amine. The covalent immobilization with glutardialdehyde lead to an enzyme loading of 0.10 genzyme/gtextile. The textile-based peroxidase shows a high activity retention in the presence of organic media. This catalyst is shown to enable the epoxidation of cyclohexene in various solvents as well as under neat conditions. A model reactor was produced by 3D printing which places the textile catalyst at the interphase between the liquid reaction phase and the product extracting solvent.


Assuntos
Cicloexenos/metabolismo , Enzimas Imobilizadas/metabolismo , Peroxidases/metabolismo , Têxteis , Biocatálise , Corantes , Glutaral/metabolismo , Oxirredução , Solventes/metabolismo
5.
Phys Med Biol ; 56(12): 3669-84, 2011 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-21610294

RESUMO

In the multi-criteria optimization approach to IMRT planning, a given dose distribution is evaluated by a number of convex objective functions that measure tumor coverage and sparing of the different organs at risk. Within this context optimizing the intensity profiles for any fixed set of beams yields a convex Pareto set in the objective space. However, if the number of beam directions and irradiation angles are included as free parameters in the formulation of the optimization problem, the resulting Pareto set becomes more intricate. In this work, a method is presented that allows for the comparison of two convex Pareto sets emerging from two distinct beam configuration choices. For the two competing beam settings, the non-dominated and the dominated points of the corresponding Pareto sets are identified and the distance between the two sets in the objective space is calculated and subsequently plotted. The obtained information enables the planner to decide if, for a given compromise, the current beam setup is optimal. He may then re-adjust his choice accordingly during navigation. The method is applied to an artificial case and two clinical head neck cases. In all cases no configuration is dominating its competitor over the whole Pareto set. For example, in one of the head neck cases a seven-beam configuration turns out to be superior to a nine-beam configuration if the highest priority is the sparing of the spinal cord. The presented method of comparing Pareto sets is not restricted to comparing different beam angle configurations, but will allow for more comprehensive comparisons of competing treatment techniques (e.g., photons versus protons) than with the classical method of comparing single treatment plans.


Assuntos
Modelos Teóricos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos
6.
Phys Med Biol ; 52(19): 6039-51, 2007 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-17881818

RESUMO

In inverse planning for intensity-modulated radiotherapy (IMRT), the fluence distribution of each treatment beam is usually calculated in an optimization process. The delivery of the resulting treatment plan using multileaf collimators (MLCs) is performed either in the step-and-shoot or sliding window technique. For step-and-shoot delivery, the arbitrary beam fluence distributions have to be transformed into an applicable sequence of subsegments. In a stratification step the complexity of the fluence maps is reduced by assigning each beamlet to discrete intensity values, followed by the sequencing step that generates the subsegments. In this work, we concentrate on the stratification for step-and-shoot delivery. Different concepts of stratification are formally introduced. In addition to already used strategies that minimize the difference between original and stratified beam intensities, we propose an original stratification principle that minimizes the error of the resulting dose distribution. It could be shown that for a comparable total number of subsegments the dose-oriented stratification results in a better approximation of the original, unsequenced plan. The presented algorithm can replace the stratification routine in existing sequencer programs and can also be applied to interpolated plans that are generated in an interactive decision making process of multicriteria inverse planning programs.


Assuntos
Algoritmos , Modelos Biológicos , Neoplasias/radioterapia , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Simulação por Computador , Humanos , Dosagem Radioterapêutica , Eficiência Biológica Relativa , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA