Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Rev ; 124(13): 8233-8306, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38885684

RESUMO

Interest in energy-to-X and X-to-energy (where X represents green hydrogen, carbon-based fuels, or ammonia) technologies has expanded the field of electrochemical conversion and storage. Solid oxide electrochemical cells (SOCs) are among the most promising technologies for these processes. Their unmatched conversion efficiencies result from favorable thermodynamics and kinetics at elevated operating temperatures (400-900 °C). These solid-state electrochemical systems exhibit flexibility in reversible operation between fuel cell and electrolysis modes and can efficiently utilize a variety of fuels. However, electrocatalytic materials at SOC electrodes remain nonoptimal for facilitating reversible operation and fuel flexibility. In this Review, we explore the diverse range of electrocatalytic materials utilized in oxygen-ion-conducting SOCs (O-SOCs) and proton-conducting SOCs (H-SOCs). We examine their electrochemical activity as a function of composition and structure across different electrochemical reactions to highlight characteristics that lead to optimal catalytic performance. Catalyst deactivation mechanisms under different operating conditions are discussed to assess the bottlenecks in performance. We conclude by providing guidelines for evaluating the electrochemical performance of electrode catalysts in SOCs and for designing effective catalysts to achieve flexibility in fuel usage and mode of operation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...