Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gene ; 824: 146381, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35271951

RESUMO

Cervical cancer (CC) is the most prevalent malignant gynecological tumor with limited treatments. The present study describes the role of SPP1 in cancer progression, SPP1 emerged as one of the most overexpressed genes identified through clariom D transcriptome microarray. This investigation aims towards identifying a potential gene with significant prognostic value for detection and early diagnosis of cervical cancer. The elevated expression of SPP1 in cervical squamous cell carcinoma tissue was validated across GEO (Gene Expression Omnibus) microarray data sets, TCGA (The Cancer Genome Atlas), and Oncomine databases. SPP1 expression was found to be prognostically significant, showing association with poor survival rate of the patients. Our study intended to assess the expression of secreted phosphoprotein (SPP1) gene at mRNA and protein levels, and to explore the association of single nucleotide polymorphisms of SPP1 with risk of CC. Further, receiver operating characteristics (ROC) curve was plotted to determine the levels of SPP1 to differentiate CC against control. Results revealed significant (p < 0.01) stage-wise upregulation of SPP1 in CC compared to the normal cervical tissue and this was further confirmed using Immunohistochemistry and real-time PCR. The ROC for SPP1 demonstrated good selective power to differentiate malignant CC and non-malignant cervical tissues. The SPP1 gene -443 T > C promoter polymorphisms are found to be significantly predominant in the disease group and Insilico analysis by the TRANSFAC software confirms its association with loss of STAT6 transcription factor binding site leading to overexpression of the SPP1.


Assuntos
Carcinoma de Células Escamosas , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Carcinoma de Células Escamosas/genética , Feminino , Humanos , Osteopontina/genética , Osteopontina/metabolismo , Infecções por Papillomavirus/genética , Transcriptoma , Neoplasias do Colo do Útero/genética
2.
Appl Biochem Biotechnol ; 194(1): 570-586, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34705247

RESUMO

Cervical cancer is the second most common cause of cancer deaths in women worldwide and remains the main reason of mortality among women of reproductive age in developing countries. Nitric oxide is involved in several physiological functions inclusive of inflammatory and immune responses. However, the function of NO in tumor biology is debatable. The inducible NOS (iNOS/NOS2) isoform is the one responsible to maintain the levels of NO, and it exhibits pleotropic effects in various cancers with concentration-dependent pro- and anti-tumor effects. iNOS triggers angiogenesis and endothelial cell migration in tumors by regulating the levels of vascular endothelial growth factor (VEGF). In drug discovery, drug repurposing involves investigations of approved drug candidates to treat various other diseases. In this study, we used anti-cancer drugs and small molecules to target iNOS and identify a potential selective iNOS inhibitor. The structures of ligands were geometrically optimized and energy minimized using Hyperchem software. Molecular docking was performed using Molegro virtual docker, and ligands were selected based on MolDock score, Rerank score, and H-bonding energy. In the study shown, venetoclax compound demonstrated excellent binding affinity to iNOS protein. This compound exhibited the lowest MolDock score and Rerank score with better H-bonding energy to iNOS. The binding efficacy of venetoclax was analyzed by performing molecular docking and molecular dynamic simulations. Multiple parameters were used to analyze the simulation trajectory, like root mean square deviation (RMSD), radius of gyration (Rg), and hydrogen bond interactions. Based on the results, venetoclax emerges to be a promising potential iNOS inhibitor to curtail cervical cancer progression.


Assuntos
Antineoplásicos/química , Inibidores Enzimáticos/química , Simulação de Acoplamento Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/química , Neoplasias do Colo do Útero/enzimologia , Antineoplásicos/uso terapêutico , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/uso terapêutico , Feminino , Humanos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico
3.
Oxid Med Cell Longev ; 2021: 6692628, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815659

RESUMO

This work is aimed at investigating the expression levels of inducible nitric oxide synthase (iNOS) in cervical cancer and identifying a potential iNOS inhibitor. The data mining studies performed advocated iNOS to be a promising biomarker for cancer prognosis, as it is highly overexpressed in several malignant cancers. The elevated iNOS was found to be associated with poor survival and increased tumor aggressiveness in cervical cancer. Immunohistochemical and RT-PCR investigations of iNOS showed significant upregulation of endogenous iNOS expression in the cervical tumor samples, thus making iNOS a potent target for decreasing tumor inflammation and aggressiveness. Andrographolide, a plant-derived diterpenoid lactone, is widely reported to be effective against infections and inflammation, causing no adverse side effects on humans. In the current study, we investigated the effect of andrographolide on the prognostic value of iNOS expression in cervical cancer, which has not been reported previously. The binding efficacy of andrographolide was analyzed by performing molecular docking and molecular dynamic simulations. Multiple parameters were used to analyze the simulation trajectory, like root mean square deviation (RMSD), torsional degree of freedom, protein-root mean square fluctuations (P-RMSF), ligand RMSF, total number of intramolecular hydrogen bonds, secondary structure elements (SSE) of the protein, and protein complex with the time-dependent functions of MDS. Ligand-protein interactions revealed binding efficacy of andrographolide with tryptophan amino acid of iNOS protein. Cancer cell proliferation, cell migration, cell cycle analysis, and apoptosis-mediated cell death were assessed in vitro, post iNOS inhibition induced by andrographolide treatment (demonstrated by Western blot). Results. Andrographolide exhibited cytotoxicity by inhibiting the in vitro proliferation of cervical cancer cells and also abrogated the cancer cell migration. A significant increase in apoptosis was observed with increasing andrographolide concentration, and it also induced cell cycle arrest at G1-S phase transition. Our results substantiate that andrographolide significantly inhibits iNOS expression and exhibits antiproliferative and proapoptotic effects on cervical cancer cells.


Assuntos
Apoptose , Diterpenos/farmacologia , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Neoplasias do Colo do Útero/patologia , Adulto , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Células HeLa , Humanos , Ligantes , Pessoa de Meia-Idade , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Reprodutibilidade dos Testes , Termodinâmica , Neoplasias do Colo do Útero/genética , Cicatrização/efeitos dos fármacos
4.
Biomed Res Int ; 2021: 8810074, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33829064

RESUMO

Cervical cancer is one of the most malignant reproductive diseases seen in women worldwide. The identification of dysregulated genes in clinical samples of cervical cancer may pave the way for development of better prognostic markers and therapeutic targets. To identify the dysregulated genes (DEGs), we have retrospectively collected 10 biopsies, seven from cervical cancer patients and three from normal subjects who underwent a hysterectomy. Total RNA isolated from biopsies was subjected to microarray analysis using the human Clariom D Affymetrix platform. Based on the results of principal component analysis (PCA), only eight samples are qualified for further studies; GO and KEGG were used to identify the key genes and were compared with TCGA and GEO datasets. Identified genes were further validated by quantitative real-time PCR and receiver operating characteristic (ROC) curves, and the highest Youden index was calculated in order to evaluate cutoff points (COPs) that allowed distinguishing of tissue samples of cervical squamous carcinoma patients from those of healthy individuals. By comparative microarray analysis, a total of 108 genes common across the six patients' samples were chosen; among these, 78 genes were upregulated and 26 genes were downregulated. The key genes identified were SPP1, LYN, ARRB2, COL6A3, FOXM1, CCL21, TTK, and MELK. Based on their relative expression, the genes were ordered as follows: TTK > ARRB2 > SPP1 > FOXM1 > LYN > MELK > CCL21 > COL6A3; this generated data is in sync with the TCGA datasets, except for ARRB2. Protein-protein interaction network analysis revealed that TTK and MELK are closely associated with SMC4, AURKA, PLK4, and KIF18A. The candidate genes SPP1, FOXM1, LYN, COL6A3, CCL21, TTK and MELK at mRNA level, emerge as promising candidate markers for cervical cancer prognosis and also emerge as potential therapeutic drug targets.


Assuntos
Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Transcriptoma/genética , Neoplasias do Colo do Útero/genética , Linhagem Celular Tumoral , Mineração de Dados , Bases de Dados Genéticas , Feminino , Humanos , Análise de Componente Principal , Mapas de Interação de Proteínas/genética , Curva ROC , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...