Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(4)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669312

RESUMO

Diabetes mellitus is a chronic disease and one of the fastest-growing health challenges of the last decades. Studies have shown that chronic low-grade inflammation and activation of the innate immune system are intimately involved in type 2 diabetes pathogenesis. Momordica charantia L. fruits are used in traditional medicine to manage diabetes. Herein, we report the purification of a new 23-O-ß-d-allopyranosyl-5ß,19-epoxycucurbitane-6,24-diene triterpene (charantoside XV, 6) along with 25ξ-isopropenylchole-5(6)-ene-3-O-ß-d-glucopyranoside (1), karaviloside VI (2), karaviloside VIII (3), momordicoside L (4), momordicoside A (5) and kuguaglycoside C (7) from an Indian cultivar of Momordica charantia. At 50 µM compounds, 2-6 differentially affected the expression of pro-inflammatory markers IL-6, TNF-α, and iNOS, and mitochondrial marker COX-2. Compounds tested for the inhibition of α-amylase and α-glucosidase enzymes at 0.87 mM and 1.33 mM, respectively. Compounds showed similar α-amylase inhibitory activity than acarbose (0.13 mM) of control (68.0-76.6%). Karaviloside VIII (56.5%) was the most active compound in the α-glucosidase assay, followed by karaviloside VI (40.3%), while momordicoside L (23.7%), A (33.5%), and charantoside XV (23.9%) were the least active compounds. To better understand the mode of binding of cucurbitane-triterpenes to these enzymes, in silico docking of the isolated compounds was evaluated with α-amylase and α-glucosidase.


Assuntos
Anti-Inflamatórios/farmacologia , Simulação por Computador , Frutas/química , Glicosídeos/química , Glicosídeos/farmacologia , Hipoglicemiantes/farmacologia , Momordica charantia/química , Triterpenos/química , Triterpenos/farmacologia , Animais , Anti-Inflamatórios/química , Bioensaio , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Glicosídeos/isolamento & purificação , Hipoglicemiantes/química , Ligantes , Camundongos , Conformação Molecular , Simulação de Acoplamento Molecular , Espectroscopia de Prótons por Ressonância Magnética , Células RAW 264.7 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Triterpenos/isolamento & purificação , alfa-Amilases/química , alfa-Amilases/metabolismo , alfa-Glucosidases/química , alfa-Glucosidases/metabolismo
2.
Plants (Basel) ; 9(9)2020 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-32900000

RESUMO

The bacterial pathogen 'Candidatus Liberibacter solanacearum' (Lso) is transmitted by the tomato potato psyllid (TPP), Bactericera cockerelli, to solanaceous crops. In the present study, the changes in metabolic profiles of insect-susceptible (cv CastleMart) and resistant (RIL LA3952) tomato plants in response to TPP vectoring Lso or not, were examined after 48 h post infestation. Non-volatile and volatile metabolites were identified and quantified using headspace solid-phase microextraction equipped with a gas chromatograph-mass spectrometry (HS-SPME/GC-MS) and ultra-high pressure liquid chromatography coupled to electrospray quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-QTOFMS), respectively. Partial least squares-discriminant analysis (PLS-DA) was used to define the major uncorrelated metabolite components assuming the treatments as the correlated predictors. Metabolic changes in various classes of metabolites, including volatiles, hormones, and phenolics, were observed in resistant and susceptible plants in response to the insects carrying the pathogen or not. The results suggest the involvement of differentially regulated and, in some cases, implicates antagonistic metabolites in plant defensive signaling. Upon validation, the identified metabolites could be used as markers to screen and select breeding lines with enhanced resistance to reduce economic losses due to the TPP-Lso vector-pathogen complex in Solanaceous crops.

3.
Plants (Basel) ; 9(9)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825622

RESUMO

Onion is among the most widely cultivated and consumed economic crops. Onions are an excellent dietary source of polyphenols and nutrients. However, onions phytonutrient compositions vary with cultivars and growing locations. Therefore, the present study involved the evaluation of polyphenol, nutritional composition (proteins, nitrogen, and minerals), sugars, pyruvate, antioxidant, and α-amylase inhibition activities of red onion cultivars, sweet Italian, and honeysuckle grown in California and Texas, respectively. The total flavonoid for honeysuckle and sweet Italian was 449 and 345 µg/g FW, respectively. The total anthocyanin for honeysuckle onion was 103 µg/g FW, while for sweet Italian onion was 86 µg/g FW. Cyanidin-3-(6"-malonoylglucoside) and cyanidin-3-(6"-malonoyl-laminaribioside) were the major components in both the cultivars. The pungency of red onions in honeysuckle ranged between 4.9 and 7.9 µmoL/mL, whereas in sweet Italian onion ranged from 8.3 to 10 µmoL/mL. The principal component analysis was applied to determine the most important variables that separate the cultivars of red onion. Overall results indicated that total flavonoids, total phenolic content, total anthocyanins, protein, and calories for honeysuckle onions were higher than the sweet Italian onions. These results could provide information about high quality and adding value to functional food due to the phytochemicals and nutritional composition of red onions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA