Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 111(18): 188302, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24237568

RESUMO

We combined single-molecule force spectroscopy with nuclear magnetic resonance measurements and molecular mechanics simulations to examine overstretching transitions in single-stranded nucleic acids. In single-stranded DNA and single-stranded RNA there is a low-force transition that involves unwinding of the helical structure, along with base unstacking. We determined that the high-force transition that occurs in polydeoxyadenylic acid single-stranded DNA is caused by the cooperative forced flipping of the dihedral angle formed between four atoms, O5'-C5'-C4'-C3' (γ torsion), in the nucleic acid backbone within the canonical B-type helix. The γ torsion also flips under force in A-type helices, where the helix is shorter and wider as compared to the B-type helix, but this transition is less cooperative than in the B type and does not generate a high-force plateau in the force spectrums of A-type helices. We find that a similar high-force transition can be induced in polyadenylic acid single-stranded RNA by urea, presumably due to disrupting the intramolecular hydrogen bonding in the backbone. We hypothesize that a pronounced high-force transition observed for B-type helices of double stranded DNA also involves a cooperative flip of the γ torsion. These observations suggest new fundamental relationships between the canonical structures of single-and double-stranded DNA and the mechanism of their molecular elasticity.


Assuntos
DNA de Cadeia Simples/química , RNA/química , Elasticidade , Ligação de Hidrogênio , Microscopia de Força Atômica/métodos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação de Ácido Nucleico , Análise Espectral/métodos
2.
Phys Rev Lett ; 99(1): 018302, 2007 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-17678193

RESUMO

We investigate the elasticity of two types of single-stranded synthetic DNA homopolydeoxynucletides, poly(dA) and poly(dT), by AFM-based single-molecule force spectroscopy. We find that poly(dT) exhibits the expected entropic elasticity behavior, while poly(dA) unexpectedly displays two overstretching transitions in the force-extension relationship. We suggest that these transitions, which occur at approximately 23 pN and approximately 113 pN, directly capture, for the first time, the mechanical signature of base-stacking interactions among adenines in DNA, in the absence of base pairing.


Assuntos
Pareamento de Bases , DNA/química , DNA/ultraestrutura , Microscopia de Força Atômica , Polidesoxirribonucleotídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...