Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Total Environ ; 700: 134453, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31670196

RESUMO

Heat stress induces secondary metabolic changes in plants, channeling photosynthetic carbon and energy, away from primary metabolic processes, including, growth. Use of ACC (1-aminocyclopropane-1-carboxylate) deaminase containing plant growth promoting bacteria (PGPB) in conferring heat resistance in plants and the role of PGPB, in altering net carbon assimilation, constitutive and stress volatile emissions has not been studied yet. We exposed leaves of Eucalyptus grandis inoculated and non-inoculated with PGPB Brevibacterium linens RS16 to two levels of heat stress (37 °C and 41 °C for 5 min) and quantified temporal changes in foliage photosynthetic characteristics and volatile emission rates at 0.5 h, day 1 and day 5 after the stress application. Heat stress resulted in immediate reductions in dark-adapted photosystem II (PSII) quantum yield (Fv/Fm), net assimilation rate (A), stomatal conductance to water vapor (gs), and enhancement of stress volatile emissions, including enhanced emissions of green leaf volatiles (GLV), mono- and sesquiterpenes, light weight oxygenated volatile organic compounds (LOC), geranyl-geranyl diphosphate pathway volatiles (GGDP), saturated aldehydes, and benzenoids, with partial recovery by day 5. Changes in stress-induced volatiles were always less in leaves inoculated with B. linens RS16. However, net assimilation rate was enhanced by bacterial inoculation only in the 37 °C treatment and overall reduction of isoprene emissions was observed in bacterially-treated leaves. Principal component analysis (PCA), correlation analysis and partial least squares discriminant analysis (PLS-DA) indicated that different stress applications influenced specific volatile organic compounds. In addition, changes in the expression analysis of heat shock protein 70 gene (DnaK) gene in B. linens RS16 upon exposure to higher temperatures further indicated that B. linens RS16 has developed its own heat resistance mechanism to survive under higher temperature regimes. Taken together, this study demonstrates that foliar application of ACC deaminase containing PGPB can ameliorate heat stress effects in realistic biological settings.


Assuntos
Brevibacterium/fisiologia , Eucalyptus/fisiologia , Resposta ao Choque Térmico , Estresse Fisiológico , Compostos Orgânicos Voláteis/análise , Carbono-Carbono Liases , Fotossíntese , Desenvolvimento Vegetal , Folhas de Planta
3.
Planta ; 249(6): 1903-1919, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30877435

RESUMO

MAIN CONCLUSION: Inoculation of endophytic Methylobacterium oryzae CBMB20 in salt-stressed rice plants improves photosynthesis and reduces stress volatile emissions due to mellowing of ethylene-dependent responses and activating vacuolar H+-ATPase. The objective of this study was to analyze the impact of ACC (1-aminocyclopropane-1-carboxylate) deaminase-producing Methylobacterium oryzae CBMB20 in acclimation of plant to salt stress by controlling photosynthetic characteristics and volatile emission in salt-sensitive (IR29) and moderately salt-resistant (FL478) rice (Oryza sativa L.) cultivars. Saline levels of 50 mM and 100 mM NaCl with and without bacteria inoculation were applied, and the temporal changes in stress response and salinity resistance were assessed by monitoring photosynthetic characteristics, ACC accumulation, ACC oxidase activity (ACO), vacuolar H+ ATPase activity, and volatile organic compound (VOC) emissions. Salt stress considerably reduced photosynthetic rate, stomatal conductance, PSII efficiency and vacuolar H+ ATPase activity, but it increased ACC accumulation, ACO activity, green leaf volatiles, mono- and sesquiterpenes, and other stress volatiles. These responses were enhanced with increasing salt stress and time. However, rice cultivars treated with CBMB20 showed improved plant vacuolar H+ ATPase activity, photosynthetic characteristics and decreased ACC accumulation, ACO activity and VOC emission. The bacteria-dependent changes were greater in the IR29 cultivar. These results indicate that decreasing photosynthesis and vacuolar H+ ATPase activity rates and increasing VOC emission rates in response to high-salinity stress were effectively mitigated by M. oryzae CBMB20 inoculation.


Assuntos
Etilenos/metabolismo , Methylobacterium/fisiologia , Oryza/microbiologia , Fotossíntese , Reguladores de Crescimento de Plantas/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Carbono-Carbono Liases/genética , Carbono-Carbono Liases/metabolismo , Endófitos , Genótipo , Oryza/enzimologia , Oryza/genética , Oryza/fisiologia , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Salinidade , Estresse Salino , Estresse Fisiológico , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
4.
Microbiol Res ; 215: 89-101, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30172313

RESUMO

Soil salinity is one of the major limitations that affects both plant and its soil environment, leading to reduced agricultural production. Evaluation of stress severity by plant physical and biochemical characteristics is an established way to study plant-salt stress interaction, but the halotolerant properties of plant growth promoting bacteria (PGPB) along with plant growth promotion is less studied till date. The aim of the present study was to elucidate the strategy, used by ACC deaminase-containing halotolerant Brevibacterium linens RS16 to confer salt stress tolerance in moderately salt-tolerant (FL478) and salt-sensitive (IR29) rice (Oryza sativa L.) cultivars. The plants were exposed to salt stress using 0, 50, and 100 mM of NaCl with and without bacteria. Plant physiological and biochemical characteristics were estimated after 1, 5, 10 days of stress application. H+ ATPase activity and the presence of hydroxyectoine gene (ectD) that is responsible for compatible solute accumulation were also analyzed in bacteria. The height and dry mass of bacteria inoculated plants significantly increased compared to salt-stressed plants, and the differences increased in time dependent manner. Bacteria priming reduced the plant antioxidant enzyme activity, lipid peroxidation and it also regulated the salt accumulation by modulating vacuolar H+ ATPase activity. ATPase activity and presence of hydroxyectoine gene in RS16 might have played a vital role in providing salt tolerance in bacteria inoculated rice cultivars. We conclude that dual benefits provided by the halotolerant plant growth promoting bacteria (PGPB) can provide a major way to improve rice yields in saline soil.


Assuntos
Antioxidantes/metabolismo , Brevibacterium/fisiologia , Oryza/microbiologia , Oryza/fisiologia , Desenvolvimento Vegetal/fisiologia , ATPases Translocadoras de Prótons/metabolismo , Plantas Tolerantes a Sal/microbiologia , Plantas Tolerantes a Sal/fisiologia , Diamino Aminoácidos/genética , Biomassa , Brevibacterium/efeitos dos fármacos , Brevibacterium/enzimologia , Carbono-Carbono Liases , Catalase/metabolismo , Genes Bacterianos/genética , Genótipo , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos , Oryza/efeitos dos fármacos , Oryza/enzimologia , Estresse Oxidativo/fisiologia , Desenvolvimento Vegetal/efeitos dos fármacos , Folhas de Planta/enzimologia , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Espécies Reativas de Oxigênio , Salinidade , Cloreto de Sódio/farmacologia , Solo , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/fisiologia
5.
Sci Total Environ ; 645: 721-732, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30031330

RESUMO

The emission of volatiles in response to salt stress in rice cultivars has not been studied much to date. Studies addressing the regulation of stress induced volatile emission by halotolerant plant growth promoting bacteria containing ACC (1-aminocyclopropane-1-carboxylate) deaminase are also limited. The objective of the present study was to investigate the salt alleviation potential of bacteria by regulating photosynthetic characteristics and volatile emissions in rice cultivars, and to compare the effects of the bacteria inoculation and salt responses between two rice genotypes. The interactive effects of soil salinity (0, 50, and 100 mM NaCl) and inoculation with Brevibacterium linens RS16 on ACC accumulation, ACC oxidase activity, carbon assimilation and stress volatile emissions after stress application were studied in the moderately salt resistant (FL478) and the salt-sensitive (IR29) rice (Oryza sativa L.) cultivars. It was observed that salt stress reduced foliage photosynthetic rate, but induced foliage ACC accumulation, foliage ACC oxidase activity, and the emissions of all the major classes of volatile organic compounds (VOCs) including the lipoxygenase pathway volatiles, light-weight oxygenated volatiles, long-chained saturated aldehydes, benzenoids, geranylgeranyl diphosphate pathway products, and mono- and sesquiterpenes. All these characteristics scaled up quantitatively with increasing salt stress. The effects of salt stress were more pronounced in the salt-sensitive genotype IR29 compared to the moderately salt resistant FL478 genotype. However, the bacterial inoculation significantly enhanced photosynthesis, and decreased ACC accumulation and the ACC oxidase activity, and VOC emissions both in control and salt-treated plants. Taken together, these results suggested that the ACC deaminase-containing Brevibacterium linens RS16 reduces the temporal regulation of VOC emissions and increases the plant physiological activity by reducing the availability of ethylene precursor ACC and the ACC oxidase activity under salt stress.


Assuntos
Brevibacterium/fisiologia , Oryza/microbiologia , Fotossíntese/fisiologia , Tolerância ao Sal/genética , Compostos Orgânicos Voláteis/análise , Genótipo , Oryza/genética , Oryza/fisiologia , Salinidade , Cloreto de Sódio , Estresse Fisiológico
6.
PLoS One ; 11(8): e0160356, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27479250

RESUMO

Association between arbuscular mycorrhizal fungi (AMF) and bacteria has long been studied. However, the factors influencing their association in the natural environment is still unknown. This study aimed to isolate bacteria associated with spore walls of AMF and identify their potential characters for association. Spores collected from coastal reclamation land were differentiated based on their morphology and identified by 18S rDNA sequencing as Funneliformis caledonium, Racocetra alborosea and Funneliformis mosseae. Bacteria associated with AMF spore walls were isolated after treating them with disinfection solution at different time intervals. After 0, 10 and 20 min of spore disinfection, 86, 24 and 10 spore associated bacteria (SAB) were isolated, respectively. BOX-PCR fingerprinting analysis showed that diverse bacterial communities were associated to AMF spores. Bacteria belonging to the same genera could associate with different AMF spores. Gram positive bacteria were more closely associated with AMF spores. Isolated SAB were characterized and tested for spore association characters such as chitinase, protease, cellulase enzymes and exopolysaccharide production (EPS). Among the 120 SAB, 113 SAB were able to show one or more characters for association and seven SAB did not show any association characters. The 16S rDNA sequence of SAB revealed that bacteria belonging to the phyla Firmicutes, Proteobacteria, Actinobacteria and Bactereiodes were associated with AMF spore walls.


Assuntos
Bactérias/genética , Variação Genética , Micorrizas/fisiologia , Bactérias/classificação , Bactérias/enzimologia , Bactérias/isolamento & purificação , Parede Celular/microbiologia , Celulase/genética , Celulase/metabolismo , Quitinases/genética , Quitinases/metabolismo , Análise por Conglomerados , Bactérias Gram-Positivas/classificação , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/isolamento & purificação , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/metabolismo , Análise de Sequência de DNA , Esporos Fúngicos/crescimento & desenvolvimento
7.
Genome Announc ; 4(4)2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27417835

RESUMO

Bacillus velezensis CBMB205 (= KACC 13105(T) = NCCB 100236(T)) was isolated from the rhizoplane of rice (Oryza sativa L. cv. O-dae). According to previous studies, this bacterium has several genes that can promote plant growth, such as the phosphorus-solubilizing protein-coding gene. Here, we present the first complete genome of B. velezensis CBMB205.

8.
Genome Announc ; 4(3)2016 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-27340060

RESUMO

Dyella thiooxydans ATSB10 (KACC 12756(T) = LMG 24673(T)) is a thiosulfate-oxidizing bacterium isolated from rhizosphere soils of sunflower plants. In this study, we completely sequenced the genome of D. thiooxydans ATSB10 and identified the genes involved in thiosulfate oxidation and the metabolism of aromatic intermediates.

9.
PLoS One ; 10(6): e0128784, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26035444

RESUMO

Arbuscular Mycorrhizal Fungi (AMF) play major roles in ecosystem functioning such as carbon sequestration, nutrient cycling, and plant growth promotion. It is important to know how this ecologically important soil microbial player is affected by soil abiotic factors particularly heavy metal and metalloid (HMM). The objective of this study was to understand the impact of soil HMM concentration on AMF abundance and community structure in the contaminated sites of South Korea. Soil samples were collected from the vicinity of an abandoned smelter and the samples were subjected to three complementary methods such as spore morphology, terminal restriction fragment length polymorphism (T-RFLP) and denaturing gradient gel electrophoresis (DGGE) for diversity analysis. Spore density was found to be significantly higher in highly contaminated soil compared to less contaminated soil. Spore morphological study revealed that Glomeraceae family was more abundant followed by Acaulosporaceae and Gigasporaceae in the vicinity of the smelter. T-RFLP and DGGE analysis confirmed the dominance of Funneliformis mosseae and Rhizophagus intraradices in all the study sites. Claroideoglomus claroideum, Funneliformis caledonium, Rhizophagus clarus and Funneliformis constrictum were found to be sensitive to high concentration of soil HMM. Richness and diversity of Glomeraceae family increased with significant increase in soil arsenic, cadmium and zinc concentrations. Our results revealed that the soil HMM has a vital impact on AMF community structure, especially with Glomeraceae family abundance, richness and diversity.


Assuntos
Metaloides/análise , Metais Pesados/análise , Micorrizas/fisiologia , Microbiologia do Solo , Poluentes do Solo/análise , Biodiversidade , Eletroforese em Gel de Gradiente Desnaturante , Micorrizas/classificação , Micorrizas/genética , Polimorfismo de Fragmento de Restrição , Densidade Demográfica , República da Coreia
10.
PLoS One ; 9(9): e106704, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25211235

RESUMO

Pink-pigmented facultative methylotrophs in the Rhizobiales are widespread in the environment, and many Methylobacterium species associated with plants produce plant growth-promoting substances. To gain insights into the life style at the phyllosphere and the genetic bases of plant growth promotion, we determined and analyzed the complete genome sequence of Methylobacterium oryzae CBMB20T, a strain isolated from rice stem. The genome consists of a 6.29-Mb chromosome and four plasmids, designated as pMOC1 to pMOC4. Among the 6,274 coding sequences in the chromosome, the bacterium has, besides most of the genes for the central metabolism, all of the essential genes for the assimilation and dissimilation of methanol that are either located in methylotrophy islands or dispersed. M. oryzae is equipped with several kinds of genes for adaptation to plant surfaces such as defense against UV radiation, oxidative stress, desiccation, or nutrient deficiency, as well as high proportion of genes related to motility and signaling. Moreover, it has an array of genes involved in metabolic pathways that may contribute to promotion of plant growth; they include auxin biosynthesis, cytokine biosynthesis, vitamin B12 biosynthesis, urea metabolism, biosorption of heavy metals or decrease of metal toxicity, pyrroloquinoline quinone biosynthesis, 1-aminocyclopropane-1-carboxylate deamination, phosphate solubilization, and thiosulfate oxidation. Through the genome analysis of M. oryzae, we provide information on the full gene complement of M. oryzae that resides in the aerial parts of plants and enhances plant growth. The plant-associated lifestyle of M. oryzae pertaining to methylotrophy and plant growth promotion, and its potential as a candidate for a bioinoculant targeted to the phyllosphere and focused on phytostimulation are illuminated.


Assuntos
Genoma Bacteriano , Methylobacterium/genética , Anotação de Sequência Molecular , Análise de Sequência de DNA , Cromossomos/genética , DNA Bacteriano/genética , Estresse Oxidativo , Filogenia , Caules de Planta , Probióticos
11.
Int J Syst Evol Microbiol ; 61(Pt 2): 392-398, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20305058

RESUMO

A Gram-negative, aerobic, motile, rod-shaped, thiosulfate-oxidizing bacterium, designated ATSB10(T), was isolated from rhizosphere soil of sunflower (Helianthus annuus L.). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain ATSB10(T) was closely related to members of the genera Dyella (96.4-98.1 % 16S rRNA gene sequence similarity) and Luteibacter (96.4-97.0 %) and Fulvimonas soli LMG 19981(T) (96.7 %) and Frateuria aurantia IFO 3245(T) (97.8 %). The predominant fatty acids were iso-C(16 : 0), iso-C(17 : 1)ω9c and iso-C(15 : 0). The major quinone was Q-8. The G+C content of the genomic DNA was 66.0 mol%. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidyldimethylethanolamine, an unknown phospholipid, unknown aminophospholipids and an unknown aminolipid. On the basis of phenotypic properties, phylogenetic distinctiveness and DNA-DNA relatedness, strain ATSB10(T) represents a novel species in the genus Dyella, for which the name Dyella thiooxydans sp. nov. is proposed. The type strain is ATSB10(T) (=KACC 12756(T) =LMG 24673(T)).


Assuntos
Helianthus/microbiologia , Filogenia , Rizosfera , Microbiologia do Solo , Xanthomonadaceae/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos , Dados de Sequência Molecular , Fenótipo , Fosfolipídeos , Quinonas/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Xanthomonadaceae/genética , Xanthomonadaceae/isolamento & purificação
12.
Int J Syst Evol Microbiol ; 60(Pt 10): 2490-2495, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19966000

RESUMO

A Gram-positive bacterium, designated strain CBMB205(T), was isolated from the rhizosphere soil of traditionally cultivated, field-grown rice. Cells were strictly aerobic, motile, rod-shaped and formed endospores. The best growth was achieved at 30°C and pH 7.0 in ammonium mineral salts (AMS) medium containing 600 mM methanol. A comparative 16S rRNA gene sequence-based phylogenetic analysis placed strain CBMB205(T) in a clade with the species Bacillus amyloliquefaciens, Bacillus vallismortis, Bacillus subtilis, Bacillus atrophaeus, Bacillus mojavensis and Bacillus licheniformis and revealed pairwise similarities ranging from 98.2 to 99.2 %. DNA-DNA hybridization experiments revealed a low level (<36 %) of DNA-DNA relatedness between strain CBMB205(T) and its closest relatives. The major components of the fatty acid profile were C15:0 anteiso, C15:0 iso, C16:0 iso and C17:0 anteiso. The diagnostic diamino acid of the cell wall was meso-diaminopimelic acid. The G+C content of the genomic DNA was 45.0 mol%. The lipids present in strain CBMB205(T) were diphosphatidylglycerol, phosphatidylglycerol, a minor amount of phosphatidylcholine and two unknown phospholipids. The predominant respiratory quinone was MK-7. Studies of DNA-DNA relatedness, morphological, physiological and chemotaxonomic analyses and phylogenetic data based on 16S rRNA gene sequencing enabled strain CBMB205(T) to be described as representing a novel species of the genus Bacillus, for which the name Bacillus methylotrophicus sp. nov. is proposed. The type strain is CBMB205(T) (=KACC 13105(T)=NCCB 100236(T)).


Assuntos
Bacillus subtilis/classificação , Bacillus subtilis/metabolismo , Metanol/metabolismo , Oryza/crescimento & desenvolvimento , Rizosfera , Microbiologia do Solo , Aerobiose , Bacillus subtilis/genética , Bacillus subtilis/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Metabolismo dos Carboidratos , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ácidos Graxos/análise , Concentração de Íons de Hidrogênio , Locomoção , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Oryza/microbiologia , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Esporos Bacterianos/citologia , Temperatura
13.
Int J Syst Evol Microbiol ; 60(Pt 1): 21-26, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19643869

RESUMO

A facultatively chemolithoautotrophic, thiosulfate-oxidizing, Gram-negative, aerobic, motile, rod-shaped bacterial strain, designated ATSB16(T), was isolated from rhizosphere soils of sesame (Sesamum indicum L.). 16S rRNA gene sequence analysis demonstrated that this strain was closely related to Pandoraea pnomenusa LMG 18087(T) (96.7 % similarity), P. pulmonicola LMG 18016(T) (96.5 %), P. apista LMG 16407(T) (96.2 %), P. norimbergensis LMG 18379(T) (96.1 %) and P. sputorum LMG 18819(T) (96.0 %). Strain ATSB16(T) shared 96.0-96.4 % sequence similarity with four unnamed genomospecies of Pandoraea. The major cellular fatty acids of the strain ATSB16(T) were C(17 : 0) cyclo (33.0 %) and C(16 : 0) (30.6 %). Q-8 was the predominant respiratory quinone. The major polar lipids were phosphatidylmethylethanolamine, diphosphatidylglycerol, phosphatidylethanolamine and two unidentified aminophospholipids. Hydroxyputrescine and putrescine were the predominant polyamines. The genomic DNA G+C content of the strain was 64.0 mol%. On the basis of the results obtained from this study, strain ATSB16(T) represents a novel species of the genus Pandoraea, for which the name Pandoraea thiooxydans sp. nov. is proposed. The type strain is ATSB16(T) (=KACC 12757(T) =LMG 24779(T)).


Assuntos
Burkholderiaceae/isolamento & purificação , Burkholderiaceae/metabolismo , Sesamum/microbiologia , Microbiologia do Solo , Tiossulfatos/metabolismo , Burkholderiaceae/classificação , Burkholderiaceae/genética , Crescimento Quimioautotrófico , DNA Bacteriano/genética , DNA Ribossômico/genética , Ácidos Graxos/metabolismo , Dados de Sequência Molecular , Oxirredução , Filogenia , RNA Ribossômico 16S/genética
14.
Arch Microbiol ; 191(12): 885-94, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19841903

RESUMO

A thiosulfate-oxidizing facultative chemolithoautotrophic Burkholderia sp. strain ATSB13(T) was previously isolated from rhizosphere soil of tobacco plant. Strain ATSB13(T) was aerobic, Gram-staining-negative, rod shaped and motile by means of sub-terminal flagellum. Strain ATSB13(T) exhibited mixotrophic growth in a medium containing thiosulfate plus acetate. A phylogenetic study based on 16S rRNA gene sequence analysis indicated that strain ATSB13(T) was most closely related to Burkholderia kururiensis KP23(T) (98.7%), Burkholderia tuberum STM678(T) (96.5%) and Burkholderia phymatum STM815(T) (96.4%). Chemotaxonomic data [G+C 64.0 mol%, major fatty acids, C(18:1) omega7c (28.22%), C(16:1) omega7c/15 iso 2OH (15.15%), and C(16:0) (14.91%) and Q-8 as predominant respiratory ubiquinone] supported the affiliation of the strain ATSB13(T) within the genus Burkholderia. Though the strain ATSB13(T) shared high 16S rRNA gene sequence similarity with the type strain of B. kururiensis but considerably distant from the latter in terms of several phenotypic and chemotaxonomic characteristics. DNA-DNA hybridization between strain ATSB13(T) and B. kururiensis KP23(T) was 100%, and hence, it is inferred that strain ATSB13(T) is a member of B. kururiensis. On the basis of data obtained from this study, we propose that B. kururiensis be subdivided into B. kururiensis subsp. kururiensis subsp. nov. (type strain KP23(T) = JCM 10599(T) = DSM 13646(T)) and B. kururiensis subsp. thiooxydans subsp. nov. (type strain ATSB13(T) = KACC 12758(T)).


Assuntos
Burkholderia/classificação , Burkholderia/metabolismo , Crescimento Quimioautotrófico/fisiologia , Tiossulfatos/metabolismo , Burkholderia/genética , Burkholderia/crescimento & desenvolvimento , DNA Bacteriano/química , DNA Bacteriano/genética , Hibridização de Ácido Nucleico , Oxirredução , Fenótipo , Filogenia , Microbiologia do Solo
15.
Int J Syst Evol Microbiol ; 59(Pt 11): 2904-8, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19628595

RESUMO

Three facultative methylotrophic bacterial strains, designated CBMB127(T), CBMB145 and CBMB147, were isolated from the rhizosphere soil of rice and characterized. The strains produced indole-3-acetic acid and siderophores, had 1-aminocyclopropane-1-carboxylate deaminase activity and sulfur oxidation property and also methanol dehydrogenase. Phylogenetic analysis based on the 16S rRNA and methanol dehydrogenase (mxaF) gene sequences showed that Methylophilus methylotrophus was their close relative. The results of the phenotypic, phylogenetic and genotypic analyses showed that strains CBMB127(T) and CBMB145, with 99.4 % 16S rRNA gene sequence similarity and 99 % DNA-DNA hybridization, could be distinguished from recognized species of Methylophilus. Therefore strain CBMB127(T) and CBMB145 are considered to represent a novel species of Methylophilus, for which the name Methylophilus rhizosphaerae sp. nov. is proposed, with CBMB127(T) (=KACC 13099(T)=NCCB 100233(T)) as the type strain. Strain CBMB147 represents a novel strain of the species Methylophilus methylotrophus.


Assuntos
Metanol/metabolismo , Methylophilus/isolamento & purificação , Methylophilus/metabolismo , Oryza/microbiologia , Microbiologia do Solo , Processos Autotróficos , DNA Bacteriano/genética , DNA Ribossômico/genética , Methylophilus/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética
16.
Int J Syst Evol Microbiol ; 59(Pt 1): 22-7, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19126717

RESUMO

A pink-pigmented, aerobic, facultatively methylotrophic bacterial strain, CBMB27T, isolated from leaf tissues of rice (Oryza sativa L. 'Dong-Jin'), was analysed using a polyphasic taxonomic approach. Comparative 16S rRNA gene sequence-based phylogenetic analysis placed the strain in a clade with the species Methylobacterium oryzae, Methylobacterium fujisawaense and Methylobacterium mesophilicum; strain CBMB27T showed sequence similarities of 98.3, 98.5 and 97.3 %, respectively, to the type strains of these three species. DNA-DNA hybridization experiments revealed low levels (<38 %) of DNA-DNA relatedness between strain CBMB27T and its closest relatives. The sequence of the 1-aminocyclopropane-1-carboxylate deaminase gene (acdS) in strain CBMB27T differed from those of close relatives. The major fatty acid of the isolate was C(18 : 1)omega7c and the G+C content of the genomic DNA was 66.8 mol%. Based on the results of 16S rRNA gene sequence analysis, DNA-DNA hybridization, and physiological and biochemical characterization, which enabled the isolate to be differentiated from all recognized species of the genus Methylobacterium, it was concluded that strain CBMB27T represents a novel species in the genus Methylobacterium for which the name Methylobacterium phyllosphaerae sp. nov. is proposed (type strain CBMB27T =LMG 24361T =KACC 11716T =DSM 19779T).


Assuntos
Methylobacterium/classificação , Oryza/microbiologia , Folhas de Planta/microbiologia , Técnicas de Tipagem Bacteriana , Carbono-Carbono Liases/genética , DNA Bacteriano/análise , DNA Ribossômico/análise , Genes de RNAr , Coreia (Geográfico) , Methylobacterium/genética , Methylobacterium/isolamento & purificação , Methylobacterium/fisiologia , Hibridização de Ácido Nucleico , Fenótipo , Filogenia , Pigmentação , RNA Ribossômico 16S , Análise de Sequência de DNA , Especificidade da Espécie
17.
Res Microbiol ; 159(9-10): 579-89, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18832027

RESUMO

Twenty-one thiosulfate-oxidizing bacteria were isolated from rhizosphere soils and 16S rRNA analysis revealed that the isolates were affiliated with seven different phylogenetic groups within the Beta and Gamma subclasses of Proteobacteria and Actinobacteria. Among these, five genera, including Dyella, Burkholderia, Alcaligenes, Microbacterium and Leifsonia sp., represented new sulfur oxidizers in rhizosphere soils. The thiosulfate-oxidizing Dyella, Burkholderia, Alcaligenes, Microbacterium, Leifsonia and Pandoraea were able to grow chemolithotrophically with a medium containing thiosulfate and exhibited growth coupled with thiosulfate oxidation. They accumulated intermediate products such as sulfur, sulfite and trithionate in the spent medium during the time course of thiosulfate oxidation, and these products were finally oxidized into sulfate. Furthermore, they possessed thiosulfate-metabolizing enzymes such as rhodanese, thiosulfate oxidase, sulfite oxidase and trithionate hydrolase, suggesting that these bacteria use the 'S4 intermediate' (S4I) pathway for thiosulfate oxidation. Phylogenetic analysis of the soxB gene revealed that Pandoraea sp. and Pandoraea pnomenusa strains formed a separate lineage within Betaproteobacteria.


Assuntos
Bactérias , Proteínas de Bactérias/genética , Filogenia , Microbiologia do Solo , Enxofre/metabolismo , Tiossulfatos/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Crescimento Quimioautotrófico , Produtos Agrícolas/microbiologia , Dados de Sequência Molecular , Oxirredução , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
18.
Appl Microbiol Biotechnol ; 78(6): 1033-43, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18320187

RESUMO

The localization of bacterial cell, pattern of colonization, and survival of Methylobacterium suomiense CBMB120 in the rhizosphere of rice and tomato plants were followed by confocal laser scanning, scanning electron microscopy, and selective plating. M. suomiense CBMB120 was tagged with green fluorescent protein (gfp), and inoculation was carried out through seed source. The results clearly showed that the gfp marker is stably inherited and is expressed in planta allowing for easy visualization of M. suomiense CBMB120. The colonization differed in rice and tomato -- intercellular colonization of surface-sterilized root sections was visible in tomato but not in rice. In both rice and tomato, the cells were visible in the substomatal chambers of leaves. Furthermore, the strain was able to compete with the indigenous microorganisms and persist in the rhizosphere of tomato and rice, assessed through dilution plating on selective media. The detailed ultra-structural study on the rhizosphere colonization by Methylobacterium put forth conclusively that M. suomiense CBMB120 colonize the roots and leaf surfaces of the plants studied and is transmitted to the aerial plant parts from the seed source.


Assuntos
Proteínas de Fluorescência Verde/metabolismo , Methylobacterium/crescimento & desenvolvimento , Oryza/microbiologia , Folhas de Planta/microbiologia , Raízes de Plantas/microbiologia , Solanum lycopersicum/microbiologia , Proteínas de Fluorescência Verde/genética , Methylobacterium/citologia , Methylobacterium/genética , Methylobacterium/metabolismo , Microscopia Eletrônica de Varredura , Microbiologia do Solo
19.
Int J Syst Evol Microbiol ; 57(Pt 2): 326-331, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17267973

RESUMO

A pink-pigmented, facultatively methylotrophic bacterium, strain CBMB20T, isolated from stem tissues of rice, was analysed by a polyphasic approach. Strain CBMB20T utilized 1-aminocyclopropane 1-carboxylate (ACC) as a nitrogen source and produced ACC deaminase. It was related phylogenetically to members of the genus Methylobacterium. 16S rRNA gene sequence analysis indicated that strain CBMB20T was most closely related to Methylobacterium fujisawaense, Methylobacterium radiotolerans and Methylobacterium mesophilicum; however, DNA-DNA hybridization values were less than 70 % with the type strains of these species. The DNA G+C content of strain CBMB20T was 70.6 mol%. The study presents a detailed phenotypic characterization of strain CBMB20T that allows its differentiation from other Methylobacterium species. In addition, strain CBMB20T is the only known member of the genus Methylobacterium to be described from the phyllosphere of rice. Based on the data presented, strain CBMB20T represents a novel species in the genus Methylobacterium, for which the name Methylobacterium oryzae sp. nov. is proposed, with strain CBMB20T (=DSM 18207T=LMG 23582T=KACC 11585T) as the type strain.


Assuntos
Carbono-Carbono Liases/biossíntese , Methylobacterium/classificação , Methylobacterium/isolamento & purificação , Oryza/microbiologia , Aminoácidos Cíclicos/metabolismo , Técnicas de Tipagem Bacteriana , Composição de Bases , Metabolismo dos Carboidratos , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ácidos Graxos/análise , Ácidos Graxos/química , Genes de RNAr/genética , Methylobacterium/enzimologia , Methylobacterium/genética , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Filogenia , Pigmentos Biológicos/biossíntese , Caules de Planta/microbiologia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...