Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(4): 6151-6165, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34448137

RESUMO

Dust pollution and heat damage hazards are important problems affecting underground safety production. This paper is aimed at exploring the optimal magnetization conditions of magnetized water for dust removal and temperature reduction and improving the utilization rate of water. First, the surface tension, viscosity, and specific heat capacity of water under different magnetization conditions were measured experimentally. Then, the influence law of ejection pressure on spray atomization and the changes of dust removal performance before and after magnetization of water were analyzed. Based on this, the temperature reduction effect of magnetized water under different wind speeds was analyzed, and the magnetization conditions with the best coupling performance of magnetized water were obtained. Finally, a spray system was designed to control the magnetization conditions strictly. The results demonstrate that the dust removal performance is better when the magnetic field intensity is 150 mT and the magnetization time is 80 s. Under this condition, the specific heat capacity also reaches the maximum. These research results can provide a theoretical basis for the selection of dust pollution and heat damage control measures in mines.


Assuntos
Poeira , Água , Poeira/análise , Mineração , Temperatura , Vento
2.
Sci Total Environ ; 543(Pt A): 514-523, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26605831

RESUMO

Developing a more accurate greenhouse gas (GHG) emissions inventory draws too much attention. Because of its resource endowment and technical status, China has made coal-related GHG emissions a big part of its inventory. Lacking a stoichiometric carbon conversion coefficient and influenced by geological conditions and mining technologies, previous efforts to estimate fugitive methane emissions from coal mining in China has led to disagreeing results. This paper proposes a new calculation methodology to determine fugitive methane emissions from coal mining based on the domestic analysis of gas geology, gas emission features, and the merits and demerits of existing estimation methods. This new approach involves four main parameters: in-situ original gas content, gas remaining post-desorption, raw coal production, and mining influence coefficient. The case studies in Huaibei-Huainan Coalfield and Jincheng Coalfield show that the new method obtains the smallest error, +9.59% and 7.01% respectively compared with other methods, Tier 1 and Tier 2 (with two samples) in this study, which resulted in +140.34%, +138.90%, and -18.67%, in Huaibei-Huainan Coalfield, while +64.36%, +47.07%, and -14.91% in Jincheng Coalfield. Compared with the predominantly used methods, this new one possesses the characteristics of not only being a comparably more simple process and lower uncertainty than the "emission factor method" (IPCC recommended Tier 1 and Tier 2), but also having easier data accessibility, similar uncertainty, and additional post-mining emissions compared to the "absolute gas emission method" (IPCC recommended Tier 3). Therefore, methane emissions dissipated from most of the producing coal mines worldwide could be more accurately and more easily estimated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...