Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1156806, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122725

RESUMO

Introduction: Detailed analyses of genetic diversity, antigenic variability, protein localization and immunological responses are vital for the prioritization of novel malaria vaccine candidates. Comprehensive approaches to determine the most appropriate antigen variants needed to provide broad protection are challenging and consequently rarely undertaken. Methods: Here, we characterized PF3D7_1136200, which we named Asparagine-Rich Merozoite Antigen (ARMA) based on the analysis of its sequence, localization and immunogenicity. We analyzed IgG and IgM responses against the common variants of ARMA in independent prospective cohort studies in Burkina Faso (N = 228), Kenya (N = 252) and Mali (N = 195) using a custom microarray, Div-KILCHIP. Results: We found a marked population structure between parasites from Africa and Asia. African isolates shared 34 common haplotypes, including a dominant pair although the overall selection pressure was directional (Tajima's D = -2.57; Fu and Li's F = -9.69; P < 0.02). ARMA was localized to the merozoite surface, IgG antibodies induced Fc-mediated degranulation of natural killer cells and strongly inhibited parasite growth in vitro. We found profound serological diversity, but IgG and IgM responses were highly correlated and a hierarchical clustering analysis identified only three major serogroups. Protective IgG and IgM antibodies appeared to target both cross-reactive and distinct epitopes across variants. However, combinations of IgG and IgM antibodies against selected variants were associated with complete protection against clinical episodes of malaria. Discussion: Our systematic strategy exploits genomic data to deduce the handful of antigen variants with the strongest potential to induce broad protection and may be broadly applicable to other complex pathogens for which effective vaccines remain elusive.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Parasitos , Animais , Humanos , Plasmodium falciparum , Merozoítos , Antígenos de Protozoários/genética , Proteínas de Protozoários , Antígenos de Superfície , Estudos Prospectivos , Imunoglobulina G , Burkina Faso
2.
Respir Res ; 23(1): 74, 2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35346192

RESUMO

BACKGROUND: A genetic predisposition can lead to the rare disease pulmonary arterial hypertension (PAH). Most mutations have been identified in the gene BMPR2 in heritable PAH. However, as of today 15 further PAH genes have been described. The exact prevalence across these genes particularly in other PAH forms remains uncertain. We present the distribution of mutations across PAH genes identified at the largest German referral centre for genetic diagnostics in PAH over a course of > 3 years. METHODS: Our PAH-specific gene diagnostics panel was used to sequence 325 consecutive PAH patients from March 2017 to October 2020. For the first year the panel contained thirteen PAH genes: ACVRL1, BMPR1B, BMPR2, CAV1, EIF2AK4, ENG, GDF2, KCNA5, KCNK3, KLF2, SMAD4, SMAD9 and TBX4. These were extended by the three genes ATP13A3, AQP1 and SOX17 from March 2018 onwards following the genes' discovery. RESULTS: A total of 79 mutations were identified in 74 patients (23%). Of the variants 51 (65%) were located in the gene BMPR2 while the other 28 variants were found in ten further PAH genes. We identified disease-causing variants in the genes AQP1, KCNK3 and SOX17 in families with at least two PAH patients. Mutations were not only detected in patients with heritable and idiopathic but also with associated PAH. CONCLUSIONS: Genetic defects were identified in 23% of the patients in a total of 11 PAH genes. This illustrates the benefit of the specific gene panel containing all known PAH genes.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Receptores de Activinas Tipo II/genética , Adenosina Trifosfatases/genética , Hipertensão Pulmonar Primária Familiar/diagnóstico , Hipertensão Pulmonar Primária Familiar/epidemiologia , Hipertensão Pulmonar Primária Familiar/genética , Predisposição Genética para Doença/genética , Humanos , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Proteínas de Membrana Transportadoras/genética , Mutação/genética , Proteínas Serina-Treonina Quinases , Hipertensão Arterial Pulmonar/diagnóstico , Hipertensão Arterial Pulmonar/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...