Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NMR Biomed ; 34(5): e4261, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-31999397

RESUMO

This study evaluated the utility of concurrent water signal acquisition as part of the water suppression in MR spectroscopic imaging (MRSI), to allow simultaneous water referencing for metabolite quantification, and to concurrently acquire functional MRI (fMRI) data. We integrated a spatial-spectral binomial water excitation RF pulse and a short spatial-spectral echo-planar readout into the water suppression module of 2D and 3D proton-echo-planar-spectroscopic-imaging (PEPSI) with a voxel size as small as 4 x 4 x 6 mm3 . Metabolite quantification in reference to tissue water was validated in healthy controls for different prelocalization methods (spin-echo, PRESS and semi-LASER) and the clinical feasibility of a 3-minute 3D semi-Laser PEPSI scan (TR/TE: 1250/32 ms) with water referencing in patients with brain tumors was demonstrated. Spectral quality, SNR, Cramer-Rao-lower-bounds and water suppression efficiency were comparable with conventional PEPSI. Metabolite concentration values in reference to tissue water, using custom LCModel-based spectral fitting with relaxation correction, were in the range of previous studies and independent of the prelocalization method used. Next, we added a phase-encoding undersampled echo-volumar imaging (EVI) module during water suppression to concurrently acquire metabolite maps with water referencing and fMRI data during task execution and resting state in healthy controls. Integration of multimodal signal acquisition prolongated minimum TR by less than 50 ms on average. Visual and motor activation in concurrent fMRI/MRSI (TR: 1250-1500 ms, voxel size: 4 x 4 x 6 mm3 ) was readily detectable in single-task blocks with percent signal change comparable with conventional fMRI. Resting-state connectivity in sensory and motor networks was detectable in 4 minutes. This hybrid water suppression approach for multimodal imaging has the potential to significantly reduce scan time and extend neuroscience research and clinical applications through concurrent quantitative MRSI and fMRI acquisitions.


Assuntos
Imageamento por Ressonância Magnética , Processamento de Sinais Assistido por Computador , Água/química , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Lactente , Masculino , Metaboloma , Pessoa de Meia-Idade , Ondas de Rádio , Adulto Jovem
2.
Brain Connect ; 10(8): 448-463, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32892629

RESUMO

Background/Introduction: There is considerable interest in using real-time functional magnetic resonance imaging (fMRI) for monitoring functional connectivity dynamics. To date, the majority of real-time resting-state fMRI studies have examined a limited number of brain regions. This is, in part, due to the computational demands of traditional seed- and independent component analysis-based methods, in particular when using increasingly available high-speed fMRI methods. Methods: This study describes a computationally efficient, real-time, seed-based, resting-state fMRI analysis pipeline using moving averaged sliding-windows (ASW) with partial correlations and regression of motion parameters and signals from white matter and cerebrospinal fluid. Results: Analytical and numerical analyses of ASW correlation and sliding-window regression as a function of window width show selectable bandpass filter characteristics and effective suppression of artifactual correlations resulting from signal drifts and transients. The analysis pipeline is compatible with multislab echo-volumar imaging and simultaneous multislice echo-planar imaging with repetition times as short as 136 msec. High-speed, resting-state fMRI data in healthy controls demonstrate the effectiveness of this approach for minimizing artifactual correlations in white and gray matter, which was comparable to conventional regression across the entire scan. Integrating sliding-window averaging (width: W1) within a second-level sliding-window (width: W2) enabled monitoring of intra- and internetwork correlation dynamics of up to 12 resting-state networks with bandpass filter characteristics determined by the first-level sliding-window and temporal resolution W1 + W2. Conclusions: The computational performance and confound tolerance make this seed-based, resting-state fMRI approach suitable for real-time monitoring of data quality and resting-state connectivity dynamics in neuroscience and clinical research studies. Impact statement Using averaged sliding-windows for seed-based correlation and regression of confounding signals provides a powerful model-free approach to increase tolerance to artifactual signal transients in resting-state analysis. The algorithmic efficiency of this sliding-window approach enables real-time, seed-based, resting-state functional magnetic resonance imaging (fMRI) of multiple networks with computation of connectivity matrices and online monitoring of data quality. Integration of a second-level sliding-window enables mapping of resting-state connectivity dynamics. Sensitivity and tolerance to confounding signals compare favorably with conventional correlation and confound regression across the entire scan. This methodological advance has the potential to enhance the clinical utility of resting-state fMRI and facilitate neuroscience applications.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Vias Neurais/diagnóstico por imagem , Neuroimagem/métodos , Algoritmos , Artefatos , Mapeamento Encefálico/métodos , Líquido Cefalorraquidiano/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Humanos , Rede Nervosa/diagnóstico por imagem , Reprodutibilidade dos Testes , Descanso , Substância Branca/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...