Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(13): 11264-11275, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35415328

RESUMO

σ-Hole and lone-pair (lp)-hole interactions within σ-hole···σ-hole, σ-hole···lp-hole, and lp-hole···lp-hole configurations were comparatively investigated on the pnicogen···pnicogen homodimers (PCl3)2, for the first time, under field-free conditions and the influence of the external electric field (EEF). The electrostatic potential calculations emphasized the impressive versatility of the examined PCl3 monomers to participate in σ-hole and lp-hole pnicogen interactions. Crucially, the sizes of σ-hole and lp-hole were enlarged under the influence of the positively directed EEF and decreased in the case of reverse direction. Interestingly, the energetic quantities unveiled more favorability of the σ-hole···lp-hole configuration of the pnicogen···pnicogen homodimers, with significant negative interaction energies, than σ-hole···σ-hole and lp-hole···lp-hole configurations. Quantum theory of atoms in molecules and noncovalent interaction index analyses were adopted to elucidate the nature and origin of the considered interactions, ensuring their closed shell nature and the occurrence of attractive forces within the studied homodimers. Symmetry-adapted perturbation theory-based energy decomposition analysis alluded to the dispersion force as the main physical component beyond the occurrence of the examined interactions. The obtained findings would be considered as a fundamental underpinning for forthcoming studies pertinent to chemistry, materials science, and crystal engineering.

2.
RSC Adv ; 11(7): 4022-4034, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35424345

RESUMO

σ-hole and lone-pair (lp) hole interactions of trivalent pnicogen-bearing (ZF3) compounds were comparatively scrutinized, for the first time, under field-free and external electric field (EEF) conditions. Conspicuously, the sizes of the σ-hole and lp-hole were increased by applying an EEF along the positive direction, while the sizes of both holes decreased through the reverse EEF direction. The MP2 energetic calculations of ZF3⋯FH/NCH complexes revealed that σ-holes exhibited more impressive interaction energies compared to the lp-holes. Remarkably, the strengths of σ-hole and lp-hole interactions evolved with the increment of the positive value of the considered EEF; i.e., the interaction energy increased as the utilized EEF value increased. Unexpectedly, under field-free conditions, nitrogen-bearing complexes showed superior strength for their lp-hole interactions than phosphorus-bearing complexes. However, the reverse picture was exhibited for the interaction energies of nitrogen- and phosphorus-bearing complexes interacting within lp-holes by applying the high values of a positively directed EEF. These results significantly demonstrate the crucial influence of EEF on the strength of σ-hole and lp-hole interactions, which in turn leads to an omnipresent enhancement for variable fields, including biological simulations and material science.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...