Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466480

RESUMO

Cameras and laser scanners are complementary tools for a 2D/3D information generation. Systematic and random errors cause the misalignment of the multi-sensor imagery and point cloud data. In this paper, a novel feature-based approach is proposed for imagery and point cloud fine registration. The tie points and its two neighbor pixels are matched in the overlap images, which are intersected in the object space to create the differential tie plane. A preprocessing is applied to the corresponding tie points and non-robust ones are removed. Initial coarse Exterior Orientation Parameters (EOPs), Interior Orientation Parameters (IOPs), and Additional Parameters (APs) are used to transform tie plane points to the object space. Then, the nearest points of the point cloud data to the transformed tie plane points are estimated. These estimated points are used to calculate Directional Vectors (DV) of the differential planes. As a constraint equation along with the collinearity equation, each object space tie point is forced to be located on the point cloud differential plane. Two different indoor and outdoor experimental data are used to assess the proposed approach. Achieved results show about 2.5 pixels errors on checkpoints. Such results demonstrated the robustness and practicality of the proposed approach.

2.
Opt Express ; 25(21): 24927-24938, 2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-29041166

RESUMO

This paper presents a method that expresses the fringe pattern as an exponential function and a mathematical model for gamma-independent phase computation. The method was compared to: (i) conventional phase measurement without nonlinearity correction, and (ii) conventional gamma correction by pattern pre-distortion based on an input-to-projector camera-output look-up table. The pre-distorted and exponential methods achieved large reduction in error compared to conventional computation with no gamma correction. The advantage of the exponential method is that no system gamma nonlinearity calibration procedure or information is required. This reduces optical system setup before measurement and permits easier use of off-the-shelf projectors.

3.
Sensors (Basel) ; 13(9): 12030-43, 2013 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-24021971

RESUMO

The Rational Function Model (RFM) has been widely used as an alternative to rigorous sensor models of high-resolution optical imagery in photogrammetry and remote sensing geometric processing. However, not much work has been done to evaluate the applicability of the RF model for Synthetic Aperture Radar (SAR) image processing. This paper investigates how to generate a Rational Polynomial Coefficient (RPC) for high-resolution TerraSAR-X imagery using an independent approach. The experimental results demonstrate that the RFM obtained using the independent approach fits the Range-Doppler physical sensor model with an accuracy of greater than 10-3 pixel. Because independent RPCs indicate absolute errors in geolocation, two methods can be used to improve the geometric accuracy of the RFM. In the first method, Ground Control Points (GCPs) are used to update SAR sensor orientation parameters, and the RPCs are calculated using the updated parameters. Our experiment demonstrates that by using three control points in the corners of the image, an accuracy of 0.69 pixels in range and 0.88 pixels in the azimuth direction is achieved. For the second method, we tested the use of an affine model for refining RPCs. In this case, by applying four GCPs in the corners of the image, the accuracy reached 0.75 pixels in range and 0.82 pixels in the azimuth direction.


Assuntos
Algoritmos , Modelos Teóricos , Radar , Imagens de Satélites/métodos , Simulação por Computador
4.
Sensors (Basel) ; 11(9): 8721-40, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22164102

RESUMO

Time-of-flight cameras, based on photonic mixer device (PMD) technology, are capable of measuring distances to objects at high frame rates, however, the measured ranges and the intensity data contain systematic errors that need to be corrected. In this paper, a new integrated range camera self-calibration method via joint setup with a digital (RGB) camera is presented. This method can simultaneously estimate the systematic range error parameters as well as the interior and external orientation parameters of the camera. The calibration approach is based on photogrammetric bundle adjustment of observation equations originating from collinearity condition and a range errors model. Addition of a digital camera to the calibration process overcomes the limitations of small field of view and low pixel resolution of the range camera. The tests are performed on a dataset captured by a PMD[vision]-O3 camera from a multi-resolution test field of high contrast targets. An average improvement of 83% in RMS of range error and 72% in RMS of coordinate residual, over that achieved with basic calibration, was realized in an independent accuracy assessment. Our proposed calibration method also achieved 25% and 36% improvement on RMS of range error and coordinate residual, respectively, over that obtained by integrated calibration of the single PMD camera.


Assuntos
Fotografação , Calibragem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...