Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 11: 1182, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32695072

RESUMO

The World Health Organization (WHO) has developed specific guidelines for critical concentrations (CCs) of antibiotics used for tuberculosis (TB) treatment, which is universally followed for drug susceptibility testing (DST) of clinical specimens. However, the CC of drugs can differ significantly among the mycobacterial species based on the population, geographic location, and the prevalence of the infecting strain in a particular area. The association between CC and the minimal inhibitory concentration (MIC) of anti-TB drugs is poorly understood. In this study, we assessed the MICs of anti-TB drugs, including isoniazid (INH), rifampicin (RMP), moxifloxacin (MXF), ethambutol (ETH), and p-aminosalicylic acid (PAS) on drug-sensitive Mtb isolates from pulmonary TB patients in South India. The MIC assays performed using solid- and liquid-growth media showed changes in the CC of a few of the tested antibiotics compared with the WHO-recommended levels. Our observation suggests that the WHO guidelines could potentially lead to overdiagnosis of drug-resistant cases, which can result in inappropriate therapeutic decisions. To evaluate the correlation between drug-resistance and CC, we performed the whole-genome sequencing for 16 mycobacterial isolates, including two wild-type and 14 resistant isolates. Our results showed that two of the isolates belonged to the W-Beijing lineage, while the rest were of the East-African-Indian type. We identified a total of 74 mutations, including five novel mutations, which are known to be associated with resistance to anti-TB drugs in these isolates. In our previous study, we determined the serum levels of INH and RMP among the same patients recruited in the current study and estimated the MICs of the corresponding infected isolates in these cases. Using these data and the CCs for INH and RMP from the present study, we performed pharmacodynamics (PD) evaluation. The results show that the PD of RMP was subtherapeutic. Together, these observations emphasize the need for optimizing the drug dosage based on the PD of large-scale studies conducted in different geographical settings.

2.
J Mol Model ; 22(8): 180, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27411553

RESUMO

Mycobacteriophages produce lysins that break down the host cell wall at the end of lytic cycle to release their progenies. The ability to lyse mycobacterial cells makes the lysins significant. Mycobacteriophage Che12 is the first reported temperate phage capable of infecting and lysogenising Mycobacterium tuberculosis. Gp11 of Che12 was found to have Chitinase domain that serves as endolysin (lysin A) for Che12. Structure of gp11 was modeled and evaluated using Ramachandran plot in which 98 % of the residues are in the favored and allowed regions. Che12 lysin A was predicted to act on NAG-NAM-NAG molecules in the peptidoglycan of cell wall. The tautomers of NAG-NAM-NAG molecule were generated and docked with lysin A. The stability and binding affinity of lysin A - NAG-NAM-NAG tautomers were studied using molecular dynamics simulations.


Assuntos
Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Micobacteriófagos/enzimologia , Mycobacterium tuberculosis/virologia , Peptidoglicano/química , Proteínas Virais/química , Homologia Estrutural de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...