Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38793419

RESUMO

Additive manufacturing enables the production of lattice structures, which have been proven to be a superior class of lightweight mechanical metamaterials whose specific stiffness can reach the theoretical limit of the upper Hashin-Shtrikman bound for isotropic cellular materials. To achieve isotropy, complex structures are required, which can be challenging in powder bed additive manufacturing, especially with regard to subsequent powder removal. The present study focuses on the Finite Element Method simulation of 2.5D anisotropic plate lattice metamaterials and the investigation of their lightweight potential. The intentional use of anisotropic structures allows the production of a cell architecture that is easily manufacturable via Laser Powder Bed Fusion (LPBF) while also enabling straightforward optimization for specific load cases. The work demonstrates that the considered anisotropic plate lattices exhibit high weight-specific stiffnesses, superior to those of honeycomb structures, and, simultaneously, a good de-powdering capability. A significant increase in stiffness and the associated surpassing of the upper Hashin-Shtrikman bound due to anisotropy is achievable by optimizing wall thicknesses depending on specific load cases. A stability analysis reveals that, in all lattice structures, plastic deformation is initiated before linear buckling occurs. An analysis of stress concentrations indicates that the introduction of radii at the plate intersections reduces stress peaks and simultaneously increases the weight-specific stiffnesses and thus the lightweight potential. Exemplary samples illustrate the feasibility of manufacturing the analyzed metamaterials within the LPBF process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...