Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38898805

RESUMO

A theoretical study of the reported photocatalytic systems based on Zr-based MOF (UiO-67) with biphenyl-4,4'-dicarboxylic acid (bpdc) and 2,2'-bipyridine-5,5'-dicarboxylic acid (bpydc) as linkers was performed. Quantum chemical calculations were carried out to understand the optical properties of the materials and to facilitate the rational design of new UiO-67 derivatives with potentially improved features as photocatalysts under ambient conditions. Hence, the effect of the structural modifications on the optical properties was studied considering different designs based on the nature of the linkers: in 1 only the bpdc linker was considered, or the mixture 1 : 1 between bpdc and bpydc linkers (labeled as 1A). Also, substituents R, -NH2, and -SH, were included in the 1A MOF only over the bpdc linker (labeled as 1A-bpdc-R) and on both bpdc and bpydc linkers (labeled as 1A-R). Thus a family of six isoreticular UiO-67 derivatives was theoretically characterized using Density Functional Theory (DFT) calculations on the ground singlet (S0) and first excited states (singlet and triplet) using Time-Dependent Density Functional Theory (TD-DFT), multiconfigurational post-Hartree-Fock method via Complete Active Space Self-Consistent Field (CASSCF). In addition, the use of periodic DFT calculations suggest that the energy transfer (ET) channel between bpdc and bpydc linkers might generate more luminescence quenching of 1A when compare to 1. Besides, the results suggest that the 1A-R (R: -SH and NH2) can be used under ambient conditions; however, the ET exhibited by 1A, cannot take place in the same magnitude in these systems. These ET can favor the photocatalytic reduction of a potential metal ion, that can coordinate with the bpydc ligand, via LMCT transition. Consequently, the MOF might be photocatalytically active against molecules of interest (such as H2, N2, CO2, among others) with photo-reduced metal ions. These theoretical results serve as a useful tool to guide experimental efforts in the design of new photocatalytic MOF-based systems.

2.
Chemphyschem ; 23(24): e202200317, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36031584

RESUMO

In this research, the adsorption of styrene and styrene oxide, both biomass derivatives, on KTaO3 (001) and LiTaO3 (0001) perovskite-like structures was studied from a theoretical point of view. The study was carried out using density functional theory (DFT) calculations. The adsorption phenomenon was deeply studied by calculating the adsorption energies (Eads ), adsorbate-surface distances (Å) and evaluating the differences of charge density and charge transfer (ΔCT). For complexes adsorbed on KTaO3 (TaO2 , KO and K(OH)2 exposed layers), the highest Eads was found for styrene oxide, attributed to the oxygen reactivity of the epoxy group describing a strong interaction with the surface. However, when evaluating a K(O)2 model, a more favorable interaction of styrene with the surface is observed, resulting in a high Eads of -9.9 eV and a ΔCT of 3.1e. For LiTaO3 , more favorable interactions are found for both adsorbates compared to KTaO3 , evidenced by the higher adsorption energies and charge density differences, particularly for the styrene complex adsorbed on TaO2 exposed layer (Eads : -10.2 eV). For the LiO termination, the surface exposed oxygens are fundamental for the adsorption of styrene and styrene oxide, leading to a considerable structural distortion. The obtained results thus provide understanding of the structural features, surface reactivity and adsorption sites of LiTaO3 and KTaO3 perovskite in the context of a heterogeneous catalytic process, such as the oxidation of styrene.


Assuntos
Teoria Quântica , Estireno , Adsorção , Estireno/química , Teoria da Densidade Funcional , Oxigênio/química
3.
J Comput Chem ; 39(11): 685-698, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29282748

RESUMO

The possibility of dye charge recombination in DSSCs remains a challenge for the field. This consists of: (a) back-transfer from the TiO2 to the oxidized dye and (b) intermolecular electron transfer between dyes. The latter is attributed to dye aggregation due to dimeric conformations. This leads to poor electron injection which decreases the photocurrent conversion efficiency. Most organic sensitizers are characterized by an Acceptor-Bridge-Donor (A-Bridge-D) arrangement that is commonly employed to provide charge separation and, therefore, lowering the unwanted back-transfer. Here, we address the intermolecular electron transfer by studying the dimerization and photovoltaic performance of a group of A-Bridge-D structured dyes. Specifically, eight famous sulfur containing π-bridges were analyzed (A and D remained fixed). Through quantum mechanical and molecular dynamics approaches, it was found that the formation of weakly stabilized dimers is allowed. The dyes with covalently bonded and fused thiophene rings as Bridges, 6d and 7d as well as 8d with a fluorene, would present high aggregation and, therefore, high probability of recombination processes. Conversely, using TiO2 cluster and surface models, delineated the shortest bridges to improve the adsorption energy and the stability of the system. Finally, the elongation of the bridge up to 2 and 3 units and their photovoltaic parameters were studied. These results showed that all the sensitizers are able to provide similar photocurrent outcomes, regardless of whether the bridge is elongated. © 2017 Wiley Periodicals, Inc.

4.
Carbohydr Polym ; 144: 315-29, 2016 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-27083823

RESUMO

Using solution-casting method, binary blends of chitosan (CS) and poly (ethylene oxide) (PEO 100,000) containing Au nanoparticles (AuNPs) were prepared. Shifts in the melting temperature (Tm) and crystallization temperature (Tc) values for CS/PEO and CS/PEO/AuNPs blends were observed by calorimetric analysis. In general, CS/PEO/AuNPs blends tended to decompose at higher temperatures than neat polymers. From the FT-IR spectra, shifts in the main signals, such as -NH2, -OH and COC, were detected in the blends and were attributed to the polymer interactions and the incorporation of gold nanoparticles. In addition, the analysis of the blend topographies by atomic force microscopy (AFM) showed that at a higher CS content, more homogenous surfaces were observed. This behavior was attributed to the interactions present in the CS/PEO/AuNPs blends. Finally, theoretical analyses helped to confirm that the gold nanoparticles would be preferentially adsorbed onto the chitosan microdomains due to the interactions between acetyl and hydroxyl groups and Au atoms.


Assuntos
Quitosana/química , Ouro/química , Nanopartículas Metálicas/química , Modelos Moleculares , Polietilenoglicóis/química , Configuração de Carboidratos , Estabilidade de Medicamentos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...