Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 460: 132264, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37633016

RESUMO

Granular activated carbon (GAC) and anion exchange resin (AIX) have been successfully demonstrated to remove per- and polyfluoroalkyl substances (PFAS) from contaminated water and wastewater. These treatment technologies, when applied for PFAS removal, generate spent media loaded with a high mass of PFAS requiring further treatment and disposal. This project is the first study on the use of supercritical water oxidation (SCWO) to destroy both the spent media and the PFAS adsorbed onto it. One sample of spent GAC and one sample of spent AIX were collected from full-scale groundwater remediation systems treating PFAS. A second spent AIX sample was collected from a mobile PFAS treatment unit. The total PFAS concentrations reported in the GAC, AIX and second AIX feedstock slurries were 0.21 mg/kg, 1.3 mg/kg and 0.9 mg/kg, respectively. Each feedstock was processed separately in a one (1) wet metric ton per day tubular reactor SCWO system. The study demonstrated that SCWO is a very effective PFAS destruction technology for spent GAC and AIX, derived from water remediation systems treating PFAS. The spent media were completely mineralized to water, carbon dioxide (CO2) and a negligible amount of residual minerals. Total target PFAS compound concentrations in the SCWO system effluents after treating spent GAC, AIX and second AIX feedstocks were 548, 77 and 796 ng/L, respectively. The results indicated that the percentage elimination of perfluorocarboxylic acids (PFCAs) was better than that of perfluosulfonic acids (PFSAs) and long-chain PFAS elimination was better than short-chain PFAS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA