Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Tipo de estudo
Intervalo de ano de publicação
1.
Med Mycol ; 59(1): 31-40, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-32407475

RESUMO

The development of mature biofilms is an aid in numerous aspects of the life cycle of fungi. It is well known that Sporothrix schenckii complex causes a benign subcutaneous mycosis, but recent studies have suggestedthat biofilm formation may be one of the important factors involved in its virulence. Here we report the study of the biomass organization and a model of the stages of S. schenckii biofilm development: adsorption, active adhesion, microcolony formation, maturation, and dispersal of biofilm fragments. During the development, the biofilm is surrounded by extracellular matrix, which contains glycoprotein (mannose rich), carbohydrates, lipids, and nucleic acid. In addition, the extracellular DNA increases in extracellular matrix as a key component to structural integrity and antifungal resistance. The study of S. schenckii biofilm contributes to a better understanding of growth biofilm and physiology, adding new insights into the mechanisms of virulence and persistence of pathogenic microorganisms.


Assuntos
Biofilmes/crescimento & desenvolvimento , Matriz Extracelular/fisiologia , Sporothrix/crescimento & desenvolvimento , Esporotricose/fisiopatologia , Virulência/fisiologia , Humanos
2.
Rev. iberoam. micol ; 35(1): 32-38, ene.-mar. 2018. tab, graf, ilus
Artigo em Inglês | IBECS | ID: ibc-170920

RESUMO

Background. Sporotrichosis is a fungal infection caused by the Sporothrix schenckii complex. The adhesion of the fungus to the host tissue has been considered the key step in the colonization and invasion, but little is known about the early events in the host-parasite interaction. Aims. To evaluate the proteolytic activity of S. schenckii on epithelial cells. Methods. The proteolytic system (at pH 5 and 7) was evaluated using azocoll and zymograms. The host-parasite interaction and epithelial cell response were also analyzed by examining the microfilament cytoskeleton using phalloidin-FITC and transmission electron microscopy. Finally, the metabolic activity was determined using an XTT assay. Results. The zymograms showed that S. schenckii yeast cells possess high intracellular and extracellular proteolytic activities (Mr≥200, 116, 97, and 70kDa) that are pH dependent and are inhibited by PMSF and E64, which act on serine and cysteine-type proteases. During the epithelial cell-protease interaction, the cells showed alterations in the microfilament distribution, as well as in the plasma membrane structure. Moreover, the metabolic activity of the epithelial cells decreased 60% without a protease inhibitor. Conclusions. Our data demonstrate the complexity of the cellular responses during the infection process. This process is somehow counteracted by the action of proteases inhibitors. Furthermore, the results provide critical information for understanding the nature of host-fungus interactions and for searching a new effective antifungal therapy, which includes protease inhibitors (AU)


Antecedentes. La esporotricosis es una infección fúngica causada por el complejo Sporothrix schenckii. La adhesión del hongo al tejido hospedero se ha considerado un paso clave en la colonización e invasión, sin embargo poco se conoce de los eventos tempranos en la interacción hospedero-parasito. Objetivos. Evaluar la actividad proteolítica de S. schenckii en células epiteliales. Métodos. El sistema proteolítico (bajo los valores pH 5 y 7) fue evaluado mediante azocoll y zimogramas. Además, la interacción hospedero-parasito y la respuesta celular fueron analizadas con el examen de los microfilamentos del citoesqueleto mediante faloidina-FITC y microscopia electrónica de transmisión. Finalmente, la actividad metabólica (viabilidad celular) fue determinada por un ensayo de XTT. Resultados. Los zimogramas de S. schenckii muestran que posee una alta actividad proteolítica intracelular y extracelular (Mr≥200, 116, 97 y 70kD) dependientes de pH e inhibidas por PMSF y E64, que actúan sobre serin- y cistein proteasas. Durante la interacción de las células epiteliales-proteasas, las células mostraron alteraciones en la distribución de los microfilamentos y la estructura de la membrana plasmática. Además, la actividad metabólica (viabilidad celular) de las células epiteliales disminuyó un 60% sin inhibidores de proteasas. Conclusiones. Nuestros datos demuestran la complejidad de la respuesta celular durante el proceso de infección, proceso que puede ser en parte contrarrestado por la acción de los inhibidores de proteasas. Además, los resultados proporcionan información crítica para el entendimiento de la naturaleza en la interacción hospedero-hongo y para una nueva terapia antifúngica eficaz que incluya inhibidores de proteasas (AU)


Assuntos
Humanos , Esporotricose/microbiologia , Peptídeo Hidrolases/isolamento & purificação , Sporothrix/isolamento & purificação , Citoesqueleto/microbiologia , Células Epiteliais/microbiologia , Dermatomicoses/microbiologia
3.
Rev Iberoam Micol ; 35(1): 32-38, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29221633

RESUMO

BACKGROUND: Sporotrichosis is a fungal infection caused by the Sporothrix schenckii complex. The adhesion of the fungus to the host tissue has been considered the key step in the colonization and invasion, but little is known about the early events in the host-parasite interaction. AIMS: To evaluate the proteolytic activity of S. schenckii on epithelial cells. METHODS: The proteolytic system (at pH 5 and 7) was evaluated using azocoll and zymograms. The host-parasite interaction and epithelial cell response were also analyzed by examining the microfilament cytoskeleton using phalloidin-FITC and transmission electron microscopy. Finally, the metabolic activity was determined using an XTT assay. RESULTS: The zymograms showed that S. schenckii yeast cells possess high intracellular and extracellular proteolytic activities (Mr≥200, 116, 97, and 70kDa) that are pH dependent and are inhibited by PMSF and E64, which act on serine and cysteine-type proteases. During the epithelial cell-protease interaction, the cells showed alterations in the microfilament distribution, as well as in the plasma membrane structure. Moreover, the metabolic activity of the epithelial cells decreased 60% without a protease inhibitor. CONCLUSIONS: Our data demonstrate the complexity of the cellular responses during the infection process. This process is somehow counteracted by the action of proteases inhibitors. Furthermore, the results provide critical information for understanding the nature of host-fungus interactions and for searching a new effective antifungal therapy, which includes protease inhibitors.


Assuntos
Células Epiteliais/microbiologia , Proteínas Fúngicas/isolamento & purificação , Peptídeo Hidrolases/isolamento & purificação , Sporothrix/enzimologia , Animais , Compostos Azo/metabolismo , Adesão Celular , Colágeno/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Parasita , Concentração de Íons de Hidrogênio , Células L , Leucina/análogos & derivados , Leucina/farmacologia , Camundongos , Peptídeo Hidrolases/metabolismo , Fluoreto de Fenilmetilsulfonil/farmacologia , Inibidores de Serina Proteinase/farmacologia , Sporothrix/fisiologia
4.
Bioinorg Chem Appl ; 2014: 923834, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25477771

RESUMO

The effects of organic and inorganic forms of selenium (Se) on human cells have been extensively studied for nutritional concentrations; however, to date, little is known about the potential toxicity at supranutritional levels. In the present study we determined the effects of sodium selenite (SSe) and selenomethionine (SeMet) on cell growth and intracellular structures in lung cancer cells exposed at Se concentrations between 0 and 3 mM. Our results showed that SSe affected cell growth more rapidly than SeMet (24 h and 48 h, resp.). After 24 h of cells exposure to 0.5, 1.5, and 3 mM SSe, cell growth was reduced by 10, 50, and 60%, as compared to controls. After 48 h, nuclear fragmentation was evident in cells exposed to SSe, suggesting an induction to cell death. In contrast, SeMet did not affect cell proliferation, and the cells were phenotypically similar to controls. Microtubules and microfilaments structures were also affected by both Se compounds, again SSe being more toxic than SeMet. To our knowledge, this is the first report on the differential effects of organic and inorganic Se in supranutritional levels in lung cancer cells.

5.
Med Mycol ; 47(2): 185-96, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18608892

RESUMO

Sporothrix schenckii is the etiological agent of sporotrichosis, a subcutaneous mycosis and an emerging disease in immunocompromised patients. Adherence to target cells is a prerequisite for fungal dissemination and systemic complications. However, information on the cell surface components involved in this interaction is rather scarce. In this investigation, the extraction of isolated cell walls from the yeast phase of S. schenckii with SDS and separation of proteins by SDS-PAGE led to the identification of a periodic acid-Schiff (PAS)-reacting 70 kDa glycoprotein (Gp70) that was purified by elution from electrophoresis gels. The purified glycopeptide exhibited a pI of 4.1 and about 5.7% of its molecular mass was contributed by N-linked glycans with no evidence for O-linked oligosaccharides. Confocal analysis of immunofluorescence assays with polyclonal antibodies directed towards Gp70 revealed a rather uniform distribution of the antigen at the cell surface with no distinguishable differences among three different isolates. Localization of Gp70 at the cell surface was confirmed by immunogold staining. Gp70 seems specific for S. schenckii as no immunoreaction was observed in SDS-extracts from other pathogenic and non-pathogenic fungi. Yeast cells of the fungus abundantly adhered to the dermis of mouse tails and the anti-Gp70 serum reduced this process in a concentration-dependent manner. Results are discussed in terms of the potential role of Gp70 in the host-pathogen interaction.


Assuntos
Parede Celular/metabolismo , Derme/microbiologia , Matriz Extracelular/microbiologia , Glicoproteínas/metabolismo , Sporothrix/fisiologia , Esporotricose/microbiologia , Animais , Adesão Celular , Derme/ultraestrutura , Glicoproteínas/isolamento & purificação , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Coelhos , Sporothrix/metabolismo
6.
Exp Parasitol ; 119(3): 398-402, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18501354

RESUMO

The effect of an ethanolic extract from the stem bark of Bursera fagaroides on ornithine decarboxylase (ODC) activity in vitro and on the growth of Entamoeba histolytica was evaluated. For this purpose, increasing concentrations of the extract, up to 8.0mg/mL, were added to amoeba cultures or ODC reaction mixtures, which were incubated at 37 degrees C. Metronidazole and G418 were added as controls. After 1.5 and 72 h, the ODC activity in vitro and growth, respectively, were determined. Results revealed a strong inhibition of growth with IC(50) values on the order of 0.05 mg/mL. ODC activity, on the other hand, was inhibited by 12% and 50% at concentrations of 4.0 and 8.0mg/mL, respectively.


Assuntos
Bursera/química , Entamoeba histolytica/efeitos dos fármacos , Ornitina Descarboxilase/efeitos dos fármacos , Extratos Vegetais/farmacologia , Amebicidas/farmacologia , Animais , Antiprotozoários/farmacologia , Entamoeba histolytica/enzimologia , Entamoeba histolytica/crescimento & desenvolvimento , Entamebíase/tratamento farmacológico , Gentamicinas/farmacologia , Metronidazol/farmacologia , Ornitina Descarboxilase/metabolismo , Inibidores da Ornitina Descarboxilase , Testes de Sensibilidade Parasitária , Extratos Vegetais/uso terapêutico
7.
Antonie Van Leeuwenhoek ; 88(3-4): 221-30, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16284928

RESUMO

A membrane fraction obtained from the filamentous form of Sporothrix schenckii was able to transfer mannose from GDP-Mannose into dolichol phosphate mannose and from this inTermediate into mannoproteins in coupled reactions catalyzed by dolichol phosphate mannose synthase and protein mannosyl transferase(s), respectively. Although the transfer reaction depended on exogenous dolichol monophosphate, membranes failed to use exogenous dolichol phosphate mannose for protein mannosylation to a substantial extent. Over 95% of the sugar was transferred to proteins via dolichol phosphate mannose and the reaction was stimulated several fold by Mg2+ and Mn2+. Incubation of membranes with detergents such as Brij 35 and Lubrol PX released soluble fractions that transferred the sugar from GDP-Mannose mostly into mannoproteins, which were separated by affinity chromatography on Concanavilin A-Sepharose 4B into lectin-reacting and non-reacting fractions. All proteins mannosylated in vitro eluted with the lectin-reacting proteins and analytical electrophoresis of this fraction revealed the presence of at least nine putative mannoproteins with molecular masses in the range of 26-112 kDa. The experimental approach described here can be used to identify and isolate specific glycoproteins mannosylated in vitro in studies of O-glycosylation.


Assuntos
Dolicol Monofosfato Manose/metabolismo , Proteínas Fúngicas/biossíntese , Glicoproteínas/biossíntese , Manosiltransferases/metabolismo , Glicoproteínas de Membrana/biossíntese , Proteínas de Membrana/metabolismo , Sporothrix/metabolismo , Coenzimas/farmacologia , Detergentes/farmacologia , Eletroforese em Gel de Poliacrilamida , Humanos , Magnésio/farmacologia , Manganês/farmacologia , Manosiltransferases/isolamento & purificação , Glicoproteínas de Membrana/isolamento & purificação , Peso Molecular , Polidocanol , Polietilenoglicóis/farmacologia
8.
Exp Parasitol ; 110(4): 363-73, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15913610

RESUMO

One of the most fascinating aspects of the Entamoeba histolytica trophozoite ultrastructure is the lack of a typical secretory pathway, particularly of rough endoplasmic reticulum and Golgi system, in a cell with such a high secretory activity. Here, we describe the isolation of amoeba cell structures containing ER-typical activities. Following isopycnic centrifugation of plasma membrane-free extracts, microsomes enriched in enzymatic activities such as dolichol-P-mannose synthase (DPMS; EC 2.4.1.83), UDP-GlcNAc:dolichol-P GlcNAc-1-P transferase (NAGPT; EC 2.7.8.15), and UDP-D-GlcNAc:dolichol-PP GlcNAc (NAGT; EC 2.4.1.141) were resolved from phagolysosomal fractions. Sec61alpha-subunit, an ER-marker involved in the translocation of nascent proteins to the ER, was found to co-fractionate with DPMS activity indicating that they are contained in microsomes with a similar density. Further, we optimized conditions for trophozoite homogenization and differential centrifugation that resulted in the separation of a 57,000 g-sedimenting microsomal fraction containing EhSec61alpha-subunit, EhDPMS, and EhPDI (protein disulfide isomerase, a soluble marker of the lumen of the ER). A relevant observation was the lack of ER markers associated to the nuclear fraction. Large macromolecular structures such as Ehproteasome were sedimented at a higher speed. Our knowledge of the molecular machinery involved in the biosynthesis of dolichol-linked oligosaccharide was enriched with the identification of putative genes related to the stepwise assembly of the dolichol-PP-GlcNAc(2)Man(5) core. No evidence of genes supporting further assembly steps was obtained at this time.


Assuntos
Entamoeba histolytica/ultraestrutura , Microssomos/enzimologia , Proteínas de Protozoários/metabolismo , Acetilglucosaminidase/análise , Fosfatase Ácida/análise , Animais , Western Blotting , Centrifugação com Gradiente de Concentração , Dolicóis/metabolismo , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/fisiologia , Entamoeba histolytica/enzimologia , Entamoeba histolytica/genética , Entamoeba histolytica/fisiologia , Glucosiltransferases/análise , Glicosilação , Manosiltransferases/análise , Manosiltransferases/genética , Proteínas de Membrana/análise , Microssomos/fisiologia , Microssomos/ultraestrutura , Oligossacarídeos/biossíntese , Complexo de Endopeptidases do Proteassoma/análise , Isomerases de Dissulfetos de Proteínas/análise , Canais de Translocação SEC
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...