Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmacogenomics J ; 24(1): 1, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216550

RESUMO

Variability in genes involved in drug pharmacokinetics or drug response can be responsible for suboptimal treatment efficacy or predispose to adverse drug reactions. In addition to common genetic variations, large-scale sequencing studies have uncovered multiple rare genetic variants predicted to cause functional alterations in genes encoding proteins implicated in drug metabolism, transport and response. To understand the functional importance of rare genetic variants in DPYD, a pharmacogene whose alterations can cause severe toxicity in patients exposed to fluoropyrimidine-based regimens, massively parallel sequencing of the exonic regions and flanking splice junctions of the DPYD gene was performed in a series of nearly 3000 patients categorized according to pre-emptive DPD enzyme activity using the dihydrouracil/uracil ([UH2]/[U]) plasma ratio as a surrogate marker of DPD activity. Our results underscore the importance of integrating next-generation sequencing-based pharmacogenomic interpretation into clinical decision making to minimize fluoropyrimidine-based chemotherapy toxicity without altering treatment efficacy.


Assuntos
Antimetabólitos Antineoplásicos , Di-Hidrouracila Desidrogenase (NADP) , Testes Farmacogenômicos , Humanos , Antimetabólitos Antineoplásicos/efeitos adversos , Biomarcadores , Di-Hidrouracila Desidrogenase (NADP)/genética , Fluoruracila/efeitos adversos , Genótipo , Farmacogenética/métodos , Testes Farmacogenômicos/métodos
2.
J Anal Toxicol ; 46(7): 791-796, 2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34480795

RESUMO

Tramadol (TR) metabolism is mainly dependent on the enzymatic activity of CYP2D6, which is controlled by genetic polymorphisms. Individuals are classified as poor (PMs), intermediate (IMs), extensive (EMs) or ultrarapid metabolizers (UMs) according to their genotype or phenotype. The determination of the metabolic phenotype for CYP2D6 can be of utmost importance in forensic and clinical contexts that involve TR intake. The present study aimed to describe CYP2D6 genetic variants in cases of TR-related deaths and to assess which metabolic ratio(s) (MRs) would allow to determine CYP2D6 phenotype without having to perform genetic analyses. Forty-eight postmortem blood samples were selected from TR-related death cases previously analyzed in a forensic context in North of France between 2013 and 2019. Initial available data included blood concentrations of TR and its two main metabolites (M1 & M2) determined using an LC--MS-MS method. TR metabolism was expressed as various MRs comprising TR/M1, TR/M2 and M2/M1. After DNA extraction, sequencing was used for genetic variant detections that affect CYP2D6 activity/expression. In the present study, the allelic variants with the higher frequency were CYP2D6*1 (68%), followed by *4 (21%). The most frequent phenotype is EMs (59.6%), followed by IMs (23.4%), PMs (12.8%) and UMs (6.4%). There was no significant correlation between each calculated MR and the genotypically predicted phenotypes, except for M2/M1 which appears related to the PM phenotype. The observed distribution of CYP2D6 genetic variants in this TR-related death population was similar to that found in the general Caucasian population. The present study displayed that the blood M2/M1 ratio could be the best-correlated TR MR to the PM phenotype, and could thus be used in forensic contexts where genetic analyses are not possible or poorly informative. For the other phenotypes, especially the UM phenotype, genetic analysis appears to be the only reliable method to predict the CYP2D6 phenotype.


Assuntos
Tramadol , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Genótipo , Fenótipo , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...