Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 55(2): 919-929, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33170670

RESUMO

Few-layered molybdenum disulfide (MoS2) nanosheets are poised to be at the core of low-voltage electronic device development. Upon environmental release, these two-dimensional (2D) structures can interact with abundant natural geocolloids. This study probes the role of dimensionality in modulating the aggregation behavior of 2D MoS2 nanosheets with plate-like geocolloids (i.e., homoionized kaolinite and montmorillonite clays). MoS2 nanosheets were exfoliated using an ethanol/water mixture, and aggregation kinetics were investigated with time-resolved dynamic light scattering at low monovalent salt concentrations and at three pH levels, in the presence and absence of Suwannee River humic acid (SRHA). Results indicate that pH and particle ratios are key to modulating the stability of MoS2/clay systems. At pH 4, aggregation of MoS2 increased with increasing MoS2/clay ratios and approached maximum values of 0.09 and 0.06 nm/s in the binary systems with montmorillonite and kaolinite, respectively. Electrostatic attraction facilitates heteroaggregation at pH values of 4 and 6; differences in the clay structures (i.e., face-face or face-edge aggregates) might explain the resulting MoS2/clay aggregate configurations, which were probed via the evolution of particle size distribution. The presence of only 0.1 mg/L SRHA drastically suppresses the heteroaggregation propensity of MoS2 nanosheets with geocolloids (to less than 0.01 nm/s at all pH values tested). The high stability of these heterogeneous systems under environmentally relevant conditions can increase the likelihood for cellular uptake and long-distance transport of MoS2.


Assuntos
Coloides , Molibdênio , Argila , Concentração de Íons de Hidrogênio , Eletricidade Estática
2.
PLoS One ; 15(7): e0236599, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32722685

RESUMO

The increasing prevalence of carbon nanotubes (CNTs) as components of new functional materials has the unintended consequence of causing increases in CNT concentrations in aqueous environments. Aqueous systems are reservoirs for bacteria, including human and animal pathogens, that can form biofilms. At high concentrations, CNTs have been shown to display biocidal effects; however, at low concentrations, the interaction between CNTs and bacteria is more complicated, and antimicrobial action is highly dependent upon the properties of the CNTs in suspension. Here, impact of low concentrations of multiwalled CNTs (MWCNTs) on the biofilm-forming opportunistic human pathogen Pseudomonas aeruginosa is studied. Using phase contrast and confocal microscopy, flow cytometry, and antibiotic tolerance assays, it is found that sub-lethal concentrations (2 mg/L) of MWCNTs promote aggregation of P. aeruginosa into multicellular clusters. However, the antibiotic tolerance of these "young" bacterial-CNT aggregates is similar to that of CNT-free cultures. Overall, our results indicate that the co-occurrence of MWCNTs and P. aeruginosa in aqueous systems, which promotes the increased number and size of bacterial aggregates, could increase the dose to which humans or animals are exposed.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Nanotubos de Carbono/química , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Suspensões
3.
Sci Total Environ ; 670: 1140-1145, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31018430

RESUMO

Fate and transport of carbon nanomaterials can be strongly dependent on the interaction with secondary particulates in the aquatic systems. Bio-particulates in water, e.g., viruses with charged and hydrophobic surface moieties, may profoundly influence the interfacial behavior and hence the environmental fate of nanomaterials (and vice versa). This study systematically evaluates the interfacial interaction of acid-functionalized multiwalled carbon nanotubes (MWNTs) with MS2 bacteriophages, or heteroaggregation behavior of these particulates, under mono- and di-valent cations and with Suwannee River humic acid (SRHA). Results indicate that the highest concentration of MS2 (i.e., MWNT:MS2 of 100:1) renders exceptional stability of MWNTs, even in high salinity conditions. However, at lower MS2 concentrations (i.e., MWNT:MS2 of 1000:1 and 10,000:1), the suppression of MWNT heteroaggregation rate is not as significant. The observed enhanced stability is likely caused by the preferential attachment of the MS2 capsids onto MWNT surfaces, which is mediated by electrostatic attraction (between negatively charged oxygen-containing moieties on MWNTs and positively charged amino acid residues on MS2 surfaces) and/or by MS2 capsids with positive hydropathy index (indicating strong hydrophobicity). Presence of SRHA also shows stability enhancement; however, at lower MS2 concentrations, SRHA dominated the heteroaggregation behavior. These results implicate that preferential interaction between virus capsids (i.e., MS2 and may be other waterborne viruses) and carbonaceous nanomaterials may influence environmental transport of both in aquatic environments.


Assuntos
Substâncias Húmicas/análise , Levivirus/efeitos dos fármacos , Nanotubos de Carbono/efeitos adversos , Rios/química , Poluentes Químicos da Água/efeitos adversos , Florida
4.
Environ Sci Technol ; 52(15): 8233-8241, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29944362

RESUMO

Multiwalled carbon nanotube-titanium dioxide (MWNT-TiO2) nanohybrids (NHs), a promising support for electrocatalysts, have a high likelihood of environmental release. Aggregation of these NHs may or may not be captured by the sum of their component behavior, thus necessitating a systematic evaluation. This study probes the "part-whole question" by systematically evaluating the role of TiO2 loading (C:Ti molar ratios of 1:0.1, 1:0.05 and 1:0.033) on the aggregation behavior of these NHs. Aggregation kinetics of these in-house synthesized (using a sol-gel method) NHs and the components is investigated with time-resolved dynamic light scattering in the presence of mono- and divalent cations and with and without Suwannee River humic acid. A deviation in the aggregation behavior from classical electrokinetic theory has been observed which indicates that the material complexity has a strong influence in the observed behavior; hence other material attributes (e.g., fractal dimension, surface roughness, charge heterogeneity, etc.) should be carefully considered when studying such materials. The sum of the aggregation behavior of the parts may not capture that of the whole (i.e., of the NHs); aggregation depends on the TiO2 loading and also on the hybridization process and the background aquatic chemistry.


Assuntos
Nanotubos de Carbono , Substâncias Húmicas , Rios , Titânio
5.
Environ Sci Technol ; 50(7): 3562-71, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26928084

RESUMO

The aggregation kinetics of nC60 and higher-order fullerene (HOF) clusters, i.e., nC70, nC76, and nC84, was systematically studied under a wide range of mono- (NaCl) and divalent (CaCl2) electrolytes and using time-resolved dynamic light scattering. Suwanee River Humic Acid (SRHA) was also used to determine the effect of natural macromolecules on nHOF aggregation. An increase in electrolyte concentration resulted in electrical double-layer compression of the negatively charged fullerene clusters, and the nC60s and nHOFs alike displayed classical Derjaguin-Landau-Verwey-Overbeek (DLVO) type interaction. The critical coagulation concentration (CCC) displayed a strong negative correlation with the carbon number in fullerenes and was estimated as 220, 150, 100, and 70 mM NaCl and 10, 12, 6, and 7.5 mM CaCl2 for nC60, nC70, nC76, and nC84, respectively. The aggregation mechanism (i.e., van der Waals interaction domination) was enumerated via molecular dynamics simulation and modified DLVO model. The presence of SRHA (2.5 mg TOC/L) profoundly influenced the aggregation behavior by stabilizing all fullerene clusters, even at a 100 mM NaCl concentration. The results from this study can be utilized to predict aggregation kinetics of nHOF clusters other than the ones studied here. The scaling factor for van der Waals interaction can also be used to model nHOF cluster interaction.


Assuntos
Organismos Aquáticos/metabolismo , Fulerenos/química , Eletroforese , Substâncias Húmicas/análise , Cinética , Modelos Lineares , Simulação de Dinâmica Molecular , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...