Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38539851

RESUMO

Modern agriculture is being challenged by deteriorating edaphoclimatic conditions and increasing anthropogenic pressure. This necessitates the development of innovative crop production systems that can sustainably meet the demands of a growing world population while minimizing the environmental impact. The use of plant biostimulants is gaining ground as a safe and ecologically sound approach to improving crop yields. In this review, biostimulants obtained from different higher plant sources are presented under the term higher plant-derived biostimulants (hPDBs). Their mechanisms of action regulate physiological processes in plants from germination to fructification, conditioned by responses induced in plant mineral nutrition and primary metabolism, specialized metabolism, photosynthetic processes, oxidative metabolism, and signaling-related processes. The aim of this review is to collect and unify the abundant information dispersed in the literature on the effects of these biostimulants, focusing on crops subjected to abiotic stress conditions and the underlying mechanisms of action.

2.
Plants (Basel) ; 12(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36771627

RESUMO

Morus alba L. is used for a range of therapeutic purposes in Asian traditional medicine, and its extracts are reported to be effective against lipidemia, diabetes, and obesity, as well as being hepatoprotective and tyrosinase-inhibitory. They are also included in cosmetic products as anti-aging and skin-whitening agents. Stilbenes, the major bioactive compounds found in M. alba, have received renewed attention recently because of their putative activity against COVID-19. In this study M. alba plants were established in vitro, and the effect of elicitation on plant growth and stilbene accumulation, specifically oxyresveratrol and trans-resveratrol, was investigated. Different concentrations of the elicitors including methyl jasmonate and cyclodextrins were applied, and stilbene levels were determined in leaves, roots, and the culture medium. Elicitation of the M. alba plants with 5 mM cyclodextrins, alone or in combination with 10 µM methyl jasmonate, significantly increased the total phenolic content in the culture medium and leaves after 7 days of treatment. The higher total phenolic content in the roots of control plants and those treated only with methyl jasmonate indicated that cyclodextrins promoted metabolite release to the culture medium. Notably, the cyclodextrin-treated plants with the highest levels of oxy- and trans-resveratrol also had the highest total phenolic content and antioxidant capacity. These results indicate that elicited M. alba in vitro plants constitute a promising alternative source of bioactive stilbenes to supply pharmaceutical and cosmeceutical industries.

3.
Plants (Basel) ; 11(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36297806

RESUMO

In this work, Solanum lycopersicum cv. Micro-Tom suspension-cultured cells were used to analyze the effect of different elicitors including ß-cyclodextrins (CD), methyl jasmonate (MJ), ß-glucan (Glu) and 3-hexenol (Hex) separately and the combined treatments of CD + MJ, CD + glu and CD + Hex on triterpene compound production after 24, 72 and 96 h. Moreover, we studied the changes induced by elicitors in the expression of key biosynthetic genes to elucidate the regulation of the triterpene biosynthetic pathway. The relative abundance of the triterpene compounds identified in the extracellular medium after elicitation (squalene, fucosterol, avenasterol, ß-sitosterol, cycloartenol and taraxasterol) was determined by gas chromatography coupled to mass spectrometry, and the expression level of genes in treated-cells was analyzed by real-time quantitative polymerase chain reaction (qRT-PCR). Results showed that, in CD-treated cells (CD, CD + MJ, CD + Glu, CD + Hex), specialized metabolites were accumulated mainly in the extracellular medium after 72 h of elicitation. Moreover, qRT-PCR analysis revealed that the highest triterpene levels in CD-treated cells (CD, CD + MJ, CD + Glu, CD + Hex) were highly correlated with the expression of cycloartenol synthase, 3-hydroxy-3-methylglutaryl-CoA reductase and squalene epoxidase genes at 24 h of treatment, whereas the expression of sterol methyltransferase was increased at 72 h. According to our findings, CD acts as a true elicitor of triterpene biosynthesis and can promote the release of bioactive compounds from the tomato cells into the extracellular medium. The results obtained provide new insights into the regulation of the triterpene metabolic pathway, which might be useful for implementing metabolic engineering techniques in tomato.

4.
Planta ; 256(2): 41, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35834131

RESUMO

MAIN CONCLUSION: ß-carotene is biologically active compound widely distributed in plants. The use of plant in vitro cultures and genetic engineering is a promising strategy for its sustainable production. ß-carotene is an orange carotenoid often found in leaves as well as in fruits, flowers, and roots. A member of the tetraterpene family, this 40-carbon isoprenoid has a conjugated double-bond structure, which is responsible for some of its most remarkable properties. In plants, ß-carotene functions as an antenna pigment and antioxidant, providing protection against photooxidative damage caused by strong UV-B light. In humans, ß-carotene acts as a precursor of vitamin A, prevents skin damage by solar radiation, and protects against several types of cancer such as oral, colon and prostate. Due to its wide spectrum of applications, the global market for ß-carotene is expanding, and the demand can no longer be met by extraction from plant raw materials. Considerable research has been dedicated to finding more efficient production alternatives based on biotechnological systems. This review provides a detailed overview of the strategies used to increase the production of ß-carotene in plant in vitro cultures, with particular focus on culture conditions, precursor feeding and elicitation, and the application of metabolic engineering.


Assuntos
Carotenoides , beta Caroteno , Biotecnologia , Carotenoides/metabolismo , Humanos , Engenharia Metabólica , Plantas Geneticamente Modificadas/genética , beta Caroteno/metabolismo
5.
Plants (Basel) ; 11(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35009040

RESUMO

This work aimed to identify the bioactive compounds present in adult maqui (Aristotelia chilensis) leaves from different stages of development and seasons of the year and compare them with leaves obtained from maqui plants grown in vitro. The qualitative and quantitative analysis of maqui leaf extracts by HPLC-DAD-ESI-MSn showed the presence of different polyphenolic compounds classified into galloyl and caffeoyl quinic acids, ellagitannins and ellagic acid- and flavonoid-derivatives. In general, the total phenolic content of the in vitro samples was higher than that of ex vitro samples, whereas the total flavonoid content was higher in winter basal leaves. Additionally, the analysis by HPLC-MS showed that the extract from spring basal leaves was enriched in quercetin, catechin, kaempferol and 3-caffeoyl quinic acids, while in the in vitro leaves extract, quercetin was not present. As regards lipophilic compounds identified by GC/MS, the samples of in vitro leaves showed a high presence of α-tocopherol and ß-sitosterol. In contrast, the samples of adult leaves presented a hight level of linolenic and linoleic acids. These results suggest that maqui leaves could be an excellent source of antioxidants and lipophilic compounds for many industries, such as the nutraceutical and pharmaceutical industries.

6.
J Plant Physiol ; 248: 153136, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32120144

RESUMO

Elicited broccoli suspension-cultured cells (SCC) provide a useful system for obtaining bioactive compounds, including glucosinolates (GS) and phenolic compounds (PCs). In this work, coronatine (Cor) and methyl jasmonate (MJ) were used to increase the bioactive compound production in broccoli SCC. Although the use of Cor and MJ in secondary metabolite production has already been described, information concerning how elicitors affect cell metabolism is scarce. It has been suggested that Cor and MJ trigger defence reactions affecting the antioxidative metabolism. In the current study, the concentration of 0.5 µM Cor was the most effective treatment for increasing both the total antioxidant capacity (measured as ferulic acid equivalents) and glucosinolate content in broccoli SCC. The elicited broccoli SCC also showed higher polyphenol oxidase activity than the control cells. Elicitation altered the antioxidative metabolism of broccoli SCC, which displayed biochemical changes in antioxidant enzymes, a decrease in the glutathione redox state and an increase in lipid peroxidation levels. Furthermore, we studied the effect of elicitation on the protein profile and observed an induction of defence-related proteins. All of these findings suggest that elicitation not only increases bioactive compound production, but it also leads to mild oxidative stress in broccoli SCC that could be an important factor triggering the production of these compounds.


Assuntos
Acetatos/administração & dosagem , Aminoácidos/administração & dosagem , Antioxidantes/metabolismo , Brassica/metabolismo , Ciclopentanos/administração & dosagem , Glucosinolatos/metabolismo , Indenos/administração & dosagem , Oxilipinas/administração & dosagem , Compostos Fitoquímicos/metabolismo , Brassica/citologia , Ácidos Cumáricos/metabolismo , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Glutationa/metabolismo , Peroxidação de Lipídeos , Células Vegetais/metabolismo , Reguladores de Crescimento de Plantas
7.
Planta ; 249(1): 113-122, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30083808

RESUMO

MAIN CONCLUSION: Diflufenican increased 493-fold the level of phytoene. Diflufenican-induced inhibition of phytoene desaturase gene expression in carrot cells resulted in an increased production of phytoene. This work analyzes the effect of diflufenican, an inhibitor of phytoene desaturase, on the gene expression profiles of the biosynthetic pathway of carotenoids related with the production of these compounds in carrot cell cultures. The results showed that the presence of 10 µM diflufenican in the culture medium increased phytoene levels, which was 493-fold higher than in control cells after 7 days of treatment but did not alter cell growth in carrot cell cultures. The maximal production of phytoene was reached with 10 µM diflufenican after 7 days of incubation in the presence of light and with 30 g/L sucrose in the culture medium. Moreover, diflufenican decreased the expression of phytoene synthase and phytoene desaturase genes at all the times studied. This diflufenican-induced inhibition of phytoene desaturase gene expression in carrot cell cultures resulted in an increased production of phytoene. Our results provide new insights into the action of diflufenican in carrot cell cultures, which could represent an alternative more sustainable and environmentally friendly system to produce phytoene than those currently used.


Assuntos
Carotenoides/metabolismo , Daucus carota/efeitos dos fármacos , Daucus carota/metabolismo , Niacinamida/análogos & derivados , Células Cultivadas , Daucus carota/efeitos da radiação , Luz , Niacinamida/farmacologia , Proteínas de Plantas/metabolismo
8.
Plant Cell Rep ; 37(7): 1011-1019, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29680944

RESUMO

KEY MESSAGE: Terbinafine induced a significant increase of squalene production. Terbinafine increased the expression levels of squalene synthase. Cyclodextrins did not work as elicitors due to the gene expression levels obtained. Plant sterols are essential components of membrane lipids, which contributing to their fluidity and permeability. Besides their cholesterol-lowering properties, they also have anti-inflammatory, antidiabetic and anticancer activities. Squalene, which is phytosterol precursor, is widely used in medicine, foods and cosmetics due to its anti-tumor, antioxidant and anti-aging activities. Nowadays, vegetable oils constitute the main sources of phytosterols and squalene, but their isolation and purification involve complex extraction protocols and high costs. In this work, Daucus carota cell cultures were used to evaluate the effect of cyclodextrins and terbinafine on the production and accumulation of squalene and phytosterols as well as the expression levels of squalene synthase and cycloartenol synthase genes. D. carota cell cultures were able to produce high levels of extracellular being phytosterols in the presence of cyclodextrins (12 mg/L), these compounds able to increase both the secretion and accumulation of phytosterols in the culture medium. Moreover, terbinafine induced a significant increase in intracellular squalene production, as seen after 168 h of treatment (497.0 ± 23.5 µg g dry weight-1) while its extracellular production only increased in the presence of cyclodextrins.The analysis of sqs and cas gene expression revealed that cyclodextrins did not induce genes encoding enzymes involved in the phytosterol biosynthetic pathway since the expression levels of sqs and cas genes in cyclodextrin-treated cells were lower than in control cells. The results, therefore, suggest that cyclodextrins were only able to release phytosterols from the cells to the extracellular medium, thus contributing to their acumulation. To sum up, D. carota cell cultures treated with cyclodextrins or terbinafine were able to produce high levels of phytosterols and squalene, respectively, and, therefore, these suspension-cultured cells of carrot constitute an alternative biotechnological system, which is at the same time more sustainable, economic and ecological for the production of these bioactive compounds.


Assuntos
Daucus carota/efeitos dos fármacos , Daucus carota/metabolismo , Naftalenos/farmacologia , Terpenos/metabolismo , Acetatos/farmacologia , Vias Biossintéticas/efeitos dos fármacos , Técnicas de Cultura de Células/métodos , Células Cultivadas , Ciclodextrinas/farmacologia , Ciclopentanos/farmacologia , Daucus carota/citologia , Daucus carota/genética , Farnesil-Difosfato Farnesiltransferase/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Transferases Intramoleculares/genética , Oxilipinas/farmacologia , Fitosteróis/metabolismo , Células Vegetais/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Esqualeno/metabolismo , Terbinafina
9.
J Agric Food Chem ; 64(38): 7049-58, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27615454

RESUMO

Phytosterols are a kind of plant metabolite belonging to the triterpene family. These compounds are essential biomolecules for human health, and so they must be taken from foods. ß-Sitosterol, campesterol, and stigmasterol are the main phytosterols found in plants. Phytosterols have beneficial effects on human health since they are able to reduce plasma cholesterol levels and have antiinflammatory, antidiabetic, and anticancer activities. However, there are many difficulties in obtaining them, since the levels of these compounds produced from plant raw materials are low and their chemical synthesis is not economically profitable for commercial exploitation. A biotechnological alternative for their production is the use of plant cell and hairy root cultures. This review is focused on the biosynthesis of phytosterols and their function in both plants and humans as well as the different biotechnological strategies to increase phytosterol biosynthesis. Special attention is given to describing new methodologies based on the use of recombinant DNA technology to increase the levels of phytosterols.


Assuntos
Fitosteróis/biossíntese , Fitosteróis/química , Plantas/química , Anti-Inflamatórios/química , Antineoplásicos/química , Disponibilidade Biológica , Biotecnologia , Colesterol/análogos & derivados , Colesterol/sangue , Colesterol/química , Pesquisa Empírica , Humanos , Hipoglicemiantes/química , Células Vegetais/química , Sitosteroides/química , Estigmasterol/química
10.
Plant Sci ; 250: 154-164, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27457992

RESUMO

In this work, suspension-cultured cells of Daucus carota were used to evaluate the effect of ß-cyclodextrins on the production of isoprenoid and phenolic compounds. The results showed that the phytosterols and phenolic compounds were accumulated in the extracellular medium (15100µgL(-1) and 477.46µgL(-1), respectively) in the presence of cyclodextrins. Unlike the phytosterol and phenolic compound content, ß-carotene (1138.03µgL(-1)), lutein (25949.54µgL(-1)) and α-tocopherol (8063.82µgL(-1)) chlorophyll a (1625.13µgL(-1)) and b (9.958 (9958.33µgL(-1)) were mainly accumulated inside the cells. Therefore, cyclodextrins were able to induce the cytosolic mevalonate pathway, increasing the biosynthesis of phytosterols and phenolic compounds, and accumulate them outside the cells. However, in the absence of these cyclic oligosaccharidic elicitors, carrot cells mainly accumulated carotenoids through the methylerythritol 4-phosphate pathway. Therefore, the use of cyclodextrins would allow the extracellular accumulation of both phytosterols and phenolic compounds by diverting the carbon flux towards the cytosolic mevalonate/phenylpropanoid pathway.


Assuntos
Daucus carota/metabolismo , Fenóis/metabolismo , Fitosteróis/metabolismo , Terpenos/metabolismo , beta-Ciclodextrinas/metabolismo , Técnicas de Cultura de Células
11.
Plant Biotechnol J ; 12(8): 1075-84, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24909837

RESUMO

Methyl jasmonate and cyclodextrins are proven effective inducers of secondary metabolism in plant cell cultures. Cyclodextrins, which are cyclic oligosaccharides, can form inclusion complexes with nonhydrophilic secondary products, thus increasing their excretion from the producer cells to the culture medium. In the present work, using a selected Taxus x media cell line cultured in a two-stage system, the relationship between taxane production and the transcript profiles of several genes involved in taxol metabolism was studied to gain more insight into the mechanism by which these two elicitors regulate the biosynthesis and excretion of taxol and related taxanes. Gene expression was not clearly enhanced by the presence of cyclodextrins in the culture medium and variably induced by methyl jasmonate, but when the culture was supplemented with both elicitors, a synergistic effect on transcript accumulation was observed. The BAPT and DBTNBT genes, which encode the last two transferases involved in the taxol pathway, appeared to control limiting biosynthetic steps. In the cell cultures treated with both elicitors, the produced taxanes were found mainly in the culture medium, which limited retroinhibition processes and taxane toxicity for the producer cells. The expression level of a putative ABC gene was found to have increased, suggesting it played a role in the taxane excretion. Taxol biosynthesis was clearly increased by the joint action of methyl jasmonate and cyclodextrins, reaching production levels 55 times higher than in nonelicited cultures.


Assuntos
Acetatos/farmacologia , Hidrocarbonetos Aromáticos com Pontes/metabolismo , Ciclodextrinas/farmacologia , Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas , Oxilipinas/farmacologia , Taxoides/metabolismo , Taxus/efeitos dos fármacos , Vias Biossintéticas , Hidrocarbonetos Aromáticos com Pontes/química , Células Cultivadas , Sinergismo Farmacológico , Proteínas de Plantas/genética , Taxoides/química , Taxus/química
12.
J Plant Physiol ; 170(3): 258-64, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23127362

RESUMO

Suspension-cultured cells of Vitis vinifera cv Monastrell were used to investigate the effects of methyljasmonate, ethylene and salicylic acid separately or in combination with cyclodextrins on both trans-resveratrol production and the induction of defense responses. The results showed that the addition of methyljasmonate or ethylene to suspension-cultured cells jointly treated with cyclodextrins and salicylic acid provoked a decrease of trans-resveratrol levels suggesting that salicylic acid has a negative and antagonistic effect with methyljasmonate or ethylene on trans-resveratrol production. Likewise, the exogenous application of these compounds induced the accumulation of pathogenesis-related proteins. Analysis of the extracellular proteome showed the presence of amino acid sequences homologous to an specific ß-1,3-glucanase, class III peroxidases and a ß-1,4-mannanase, which suggests that these signal molecules could play a role in mediating defense-related gene product expression in V. vinifera cv Monastrell. Apart from these inducible proteins, other proteins were found in both the control and elicited cell cultures of V. vinifera. These included class IV chitinase, polygalacturonase inhibitor protein and reticuline oxidase-like protein, suggesting that their expression is constitutive being involved in the modification of the cell wall architecture during cell culture growth and in the prevention of pathogen attack.


Assuntos
Anti-Infecciosos/farmacologia , Resistência à Doença/efeitos dos fármacos , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Estilbenos/metabolismo , Vitis/imunologia , Vitis/metabolismo , Acetatos/farmacologia , Células Cultivadas , Ciclodextrinas/farmacologia , Ciclopentanos/farmacologia , Etilenos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Oxilipinas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Resveratrol , Ácido Salicílico/farmacologia , Transdução de Sinais , Vitis/citologia , Vitis/efeitos dos fármacos , Vitis/genética
13.
Plant Physiol Biochem ; 62: 107-10, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23208304

RESUMO

The use of cyclic oligosaccharides like cyclodextrins (CDs), alone or combined with methyl jasmonate (MJ), as elicitors has proved very effective in stimulating the production of trans-resveratrol (trans-R) in Vitis vinifera suspension-cultured cells (SCC). Since elicitors can be used to increase trans-R production, understanding the molecular mechanisms involved would improve the management of grapevine cells as factories of this compound. The results obtained in this study provide evidence for a role of Ca(2+) in mediating elicitor-induced trans-R production in grapevine SCC. The Ca(2+) elevation was promoted by an uptake of Ca(2+) from the extracellular medium, and by Ca(2+) mobilization from intracellular organelles. Moreover, protein phosphorylation/dephosphorylation events seem to be involved in the signal transduction pathways triggered by CDs separately or in combination with MJ since trans-R production is dependent on both, the phosphorylation status of several proteins through mitogen-activated kinase pathway and the activity of tyrosine phosphatases. Our results also suggest that H(2)O(2) and NO participated in the production of trans-R triggered by both elicitors in grapevine SCC. Finally, a fast alkalinization of the extracellular medium is induced in the presence of CDs and/or MJ.


Assuntos
Acetatos/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Ciclodextrinas/farmacologia , Ciclopentanos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Oxilipinas/farmacologia , Células Vegetais/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Vitis/metabolismo , Sinalização do Cálcio/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Peróxido de Hidrogênio/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Óxido Nítrico/metabolismo , Proteínas de Plantas/metabolismo , Vitis/citologia
14.
Plant Signal Behav ; 6(3): 440-2, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21346408

RESUMO

Suspension cultured cells of Capsicum chinense secrete proteins to the culture medium in both control conditions and under methyl jasmonate treatment. The exogenous application of methyl jasmonate induced the accumulation of putative pathogenesis-related proteins, class I chitinase, leucin-rich repeat protein, NtPRp27-like protein and pectinesterase which were also found in suspension cultured cells of C. annuum elicited with methyl jasmonate. However, a germin-like protein, which has never been described in methyl jasmonate-elicited C. chinense suspension cultured cells, was found. The different effects described as being the result of exogenous application of signalling molecules like methyl jasmonate on the expression of germin-like protein suggest that germin-like proteins may play a variety of roles in protecting plants against pathogen attacks and different stresses. Further studies will be necessary to characterize the differential expression of these pathogenesis-related proteins and to throw light on the complexity of their regulation.


Assuntos
Acetatos/farmacologia , Capsicum/efeitos dos fármacos , Capsicum/metabolismo , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Proteínas de Plantas/metabolismo , Células Cultivadas , Eletroforese em Gel de Poliacrilamida , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos
15.
J Plant Physiol ; 167(15): 1273-81, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20594613

RESUMO

Capsicum annuum suspension cell cultures were used to evaluate the effect of cyclodextrins and methyl jasmonate as elicitors of defence responses. The induced defence responses included the accumulation of sesquiterpenes and phytosterols and the activation of pathogenesis-related proteins, leading to reinforcement and modification of the cell wall architecture during elicitation and protection cells against biotic stress. The results showed that the addition of both cyclodextrins and methyl jasmonate induced the biosynthesis of two sesquiterpenes, aromadendrene and solavetivone. This response was clearly synergistic since the increase in the levels of these compounds was much greater in the presence of both elicitors than when they were used separately. The biosynthesis of phytosterols was also induced in the combined treatment, as the result of an additive effect. Likewise, the exogenous application of methyl jasmonate induced the accumulation of pathogenesis-related proteins. The analysis of the extracellular proteome showed the presence of amino acid sequences homologous to PR1 and 4, NtPRp27-like proteins and class I chitinases, peroxidases and the hydrolytic enzymes LEXYL1 and 2, arabinosidases, pectinases, nectarin IV and leucin-rich repeat protein, which suggests that methyl jasmonate plays a role in mediating defence-related gene product expression in C. annuum. Apart from these methyl jamonate-induced proteins, other PR proteins were found in both the control and elicited cell cultures of C. annuum. These included class IV chitinases, beta-1,3-glucanases, thaumatin-like proteins and peroxidases, suggesting that their expression is mainly constitutive since they are involved in growth, development and defence processes.


Assuntos
Capsicum/citologia , Capsicum/metabolismo , Espaço Extracelular/metabolismo , Fitosteróis/biossíntese , Proteínas de Plantas/metabolismo , Sesquiterpenos/metabolismo , Acetatos/farmacologia , Sequência de Aminoácidos , Capsicum/efeitos dos fármacos , Células Cultivadas , Ciclopentanos/farmacologia , Eletroforese em Gel de Poliacrilamida , Espaço Extracelular/efeitos dos fármacos , Espectrometria de Massas , Dados de Sequência Molecular , Oxilipinas/farmacologia , Peptídeos/química , Proteínas de Plantas/química , Proteoma/metabolismo , Sesquiterpenos/química , beta-Ciclodextrinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...