Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Rep Health Eff Inst ; (211): 1-56, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-36193708

RESUMO

This report provides a final summary of the principal findings and key conclusions of a study supported by an HEI grant aimed at "Assessing Adverse Health Effects of Long-Term Exposure to Low Levels of Ambient Air Pollution." It is the second and final report on this topic. The study was designed to advance four critical areas of inquiry and methods development. First, it focused on predicting short- and long-term exposures to ambient fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ozone (O3) at high spatial resolution (1 km × 1 km) for the continental United States over the period 2000-2016 and linking these predictions to health data. Second, it developed new causal inference methods for estimating exposure-response (ER) curves (ERCs) and adjusting for measured confounders. Third, it applied these methods to claims data from Medicare and Medicaid beneficiaries to estimate health effects associated with short- and long-term exposure to low levels of ambient air pollution. Finally, it developed pipelines for reproducible research, including approaches for data sharing, record linkage, and statistical software. Our HEI-funded work has supported an extensive portfolio of analyses and the development of statistical methods that can be used to robustly understand the health effects of short- and long-term exposure to low levels of ambient air pollution. Our Phase 1 report (Dominici et al. 2019) provided a high-level overview of our statistical methods, data analysis, and key findings, grouped into the following five areas: (1) exposure prediction, (2) epidemiological studies of ambient exposures to air pollution at low levels, (3) sensitivity analysis, (4) methodological contributions in causal inference, and (5) an open access research data platform. The current, final report includes a comprehensive overview of the entire research project.Considering our (1) massive study population, (2) numerous sensitivity analyses, and (3) transparent assessment of covariate balance indicating the quality of causal inference for simulating randomized experiments, we conclude that conditionally on the required assumptions for causal inference, our results collectively indicate that long-term PM2.5 exposure is likely to be causally related to mortality. This conclusion assumes that the causal inference assumptions hold and, more specifically, that we accounted adequately for confounding bias. We explored various modeling approaches, conducted extensive sensitivity analyses, and found that our results were robust across approaches and models. This work relied on publicly available data, and we have provided code that allows for reproducibility of our analyses.Our work provides comprehensive evidence of associations between exposures to PM2.5, NO2, and O3 and various health outcomes. In the current report, we report more specific results on the causal link between long-term exposure to PM2.5 and mortality, even at PM2.5 levels below or equal to 12 µg/m3, and mortality among Medicare beneficiaries (ages 65 and older). This work relies on newly developed causal inference methods for continuous exposure.For the period 2000-2016, we found that all statistical approaches led to consistent results: a 10-µg/m3 decrease in PM2.5 led to a statistically significant decrease in mortality rate ranging between 6% and 7% (= 1 - 1/hazard ratio [HR]) (HR estimates 1.06 [95% CI, 1.05 to 1.08] to 1.08 [95% CI, 1.07 to 1.09]). The estimated HRs were larger when studying the cohort of Medicare beneficiaries that were always exposed to PM2.5 levels lower than 12 µg/m3 (1.23 [95% CI, 1.18 to 1.28] to 1.37 [95% CI, 1.34 to 1.40]).Comparing the results from multiple and single pollutant models, we found that adjusting for the other two pollutants slightly attenuated the causal effects of PM2.5 and slightly elevated the causal effects of NO2 exposure on all-cause mortality. The results for O3 remained almost unchanged.We found evidence of a harmful causal relationship between mortality and long-term PM2.5 exposures adjusted for NO2 and O3 across the range of annual averages between 2.77 and 17.16 µg/m3 (included >98% of observations) in the entire cohort of Medicare beneficiaries across the continental United States from 2000 to 2016. Our results are consistent with recent epidemiological studies reporting a strong association between long-term exposure to PM2.5 and adverse health outcomes at low exposure levels. Importantly, the curve was almost linear at exposure levels lower than the current national standards, indicating aggravated harmful effects at exposure levels even below these standards.There is, in general, a harmful causal impact of long-term NO2 exposures to mortality adjusted for PM2.5 and O3 across the range of annual averages between 3.4 and 80 ppb (included >98% of observations). Yet within low levels (annual mean ≤53 ppb) below the current national standards, the causal impacts of NO2 exposures on all-cause mortality are nonlinear with statistical uncertainty.The ERCs of long-term O3 exposures on all-cause mortality adjusted for PM2.5 and NO2 are almost flat below 45 ppb, which shows no statistically significant effect. Yet we observed an increased hazard when the O3 exposures were higher than 45 ppb, and the HR was approximately 1.10 when comparing Medicare beneficiaries with annual mean O3 exposures of 50 ppb versus those with 30 ppb.institutions, including those that support the Health Effects Institute; therefore, it may not reflect the views or policies of these parties, and no endorsement by them should be inferred.A list of abbreviations and other terms appears at the end of this volume.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Idoso , Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Exposição Ambiental/efeitos adversos , Humanos , Doença Iatrogênica , Medicare , Dióxido de Nitrogênio/efeitos adversos , Ozônio/efeitos adversos , Material Particulado/efeitos adversos , Reprodutibilidade dos Testes , Estados Unidos/epidemiologia
2.
J Virol ; 75(20): 9687-95, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11559801

RESUMO

JCV, a small DNA virus of the polyomavirus family, has been shown to infect glial cells of the central nervous system, hematopoietic progenitor cells, and immune system lymphocytes. A family of DNA binding proteins called nuclear factor-1 (NF-1) has been linked with site-coding specific transcription of cellular and viral genes and replication of some viruses, including JC virus (JCV). It is unclear which NF-1 gene product must be expressed by cells to promote JCV multiplication. Previously, it was shown that elevated levels of NF-1 class D mRNA were expressed by human brain cells that are highly susceptible to JCV infection but not by JCV nonpermissive HeLa cells. Recently, we reported that CD34(+) precursor cells of the KG-1 line, when treated with the phorbol ester phorbol 12-myristate 13-acetate (PMA), differentiated to cells with macrophage-like characteristics and lost susceptibility to JCV infection. These studies have now been extended by asking whether loss of JCV susceptibility by PMA-treated KG-1 cells is linked with alterations in levels of NF-1 class D expression. Using reverse transcription-PCR, we have found that PMA-treated KG-1 cells express mRNA that codes for all four classes of NF-1 proteins, although different levels of RNA expression were observed in the hematopoietic cells differentiated into macrophages. Northern hybridization confirms that the expression of NF-1 class D gene is lower in JCV nonpermissive PMA-treated KG-1 cells compared with non-PMA-treated cells. Further, using gel mobility shift assays, we were able to show the induction of specific NF-1-DNA complexes in KG-1 cells undergoing PMA treatment. The binding increases in direct relation to the duration of PMA treatment. These results suggest that the binding pattern of NF-1 class members may change in hematopoietic precursor cells, such as KG-1, as they undergo differentiation to macrophage-like cells. Transfection of PMA-treated KG-1 cells with an NF-1 class D expression vector restored the susceptibility of these cells to JCV infection, while the transfection of PMA-treated KG-1 cells with NF-1 class A, B, and C vectors was not able to restore JCV susceptibility. These data collectively suggest that selective expression of NF-1 class D has a regulatory role in JCV multiplication.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas de Ligação a DNA , Células-Tronco Hematopoéticas/virologia , Vírus JC/fisiologia , Fatores de Transcrição/metabolismo , Northern Blotting , Proteínas Estimuladoras de Ligação a CCAAT/genética , Diferenciação Celular , Linhagem Celular , Células-Tronco Hematopoéticas/metabolismo , Humanos , Vírus JC/patogenicidade , Macrófagos/metabolismo , Macrófagos/virologia , Fatores de Transcrição NFI , Proteínas Nucleares , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Acetato de Tetradecanoilforbol , Fatores de Transcrição/genética , Transfecção , Replicação Viral , Proteína 1 de Ligação a Y-Box
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...