Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 161(1)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38953443

RESUMO

The evolution of nuclear spin state populations is investigated for the case of a 13C2-labeled triyne in solution, for which the near-equivalent coupled pairs of 13C nuclei experience cross-correlated relaxation mechanisms. Inversion-recovery experiments reveal different recovery curves for the main peak amplitudes, especially when the conversion of population imbalances to observable coherences is induced by a radio frequency pulse with a small flip angle. Measurements are performed over a range of magnetic fields by using a sample shuttle apparatus. In some cases, the time constant TS for decay of nuclear singlet order is more than 100 times larger than the time constant T1 for the equilibration of longitudinal magnetization. The results are interpreted by a theoretical model incorporating cross-correlated relaxation mechanisms, anisotropic rotational diffusion, and an external random magnetic field. A Lindbladian formalism is used to describe the dissipative dynamics of the spin system in an environment of finite temperature. Good agreement is achieved between theory and experiment.

2.
J Chem Phys ; 160(1)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38174793

RESUMO

Despite the importance of rhodium complexes in catalysis, and the favorable 100% natural abundance of the spin-1/2 103Rh nucleus, there are few reports of 103Rh nuclear magnetic resonance (NMR) parameters in the literature. In part, this is the consequence of the very low gyromagnetic ratio of 103Rh and its dismal NMR sensitivity. In a previous paper [Harbor-Collins et al., J. Chem. Phys. 159, 104 307 (2023)], we demonstrated an NMR methodology for 1H-enhanced 103Rh NMR and demonstrated an application to the 103Rh NMR of the dirhodium formate paddlewheel complex. In this paper, we employ selective 18O labeling to break the magnetic equivalence of the 103Rh spin pair of dirhodium formate. This allows the estimation of the 103Rh-103Rh spin-spin coupling and provides access to the 103Rh singlet state. We present the first measurement of a 18O-induced 103Rh secondary isotope shift as well as the first instance of singlet order generated in a 103Rh spin pair. The field-dependence of 103Rh singlet relaxation is measured by field-cycling NMR experiments.

3.
J Chem Phys ; 159(10)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37698193

RESUMO

The nuclear magnetic resonance (NMR) spectroscopy of spin-1/2 nuclei with low gyromagnetic ratio is challenging due to the low NMR signal strength. Methodology for the rapid acquisition of 103Rh NMR parameters is demonstrated for the case of the rhodium formate "paddlewheel" complex Rh2(HCO2)4. A scheme is described for enhancing the 103Rh signal strength by polarization transfer from 1H nuclei, which also greatly reduces the interference from ringing artifacts, a common hurdle for the direct observation of low-γ nuclei. The 103Rh relaxation time constants T1 and T2 are measured within 20 min by using 1H-detected experiments. The field dependence of the 103Rh T1 is measured. The high-field relaxation is dominated by the chemical shift anisotropy mechanism. The 103Rh shielding anisotropy is found to be very large: |Δσ| = 9900 ± 540 ppm. This estimate is compared with density functional theory calculations.

4.
J Chem Phys ; 158(12): 124204, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37003765

RESUMO

The Aharonov-Anandan phase is a contribution to the phase acquired by the cyclic evolution of a quantum state, which depends only on the geometric properties of its trajectory. We report the study and the exploitation of the Aharonov-Anandan phase by nuclear magnetic resonance interferometry techniques in homonuclear spin-1/2 pairs in the near-equivalence limit. We introduce a new method for engineering effective zero-quantum Hamiltonians with an arbitrary phase in the transverse plane. We use this method to generate a variety of cyclic zero-quantum paths, enabling direct study of the geometric Aharonov-Anandan phase to probe the rotational characteristics of the zero-quantum subspace. We show that the geometric Aharonov-Anandan phase may be used for efficient double-quantum excitation in strongly coupled spin pairs. We find that geometric double-quantum excitation outperforms the standard method by a factor of 2 in experiments performed on a typical case involving near-equivalent spin pairs.

5.
J Chem Phys ; 157(13): 134302, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36208995

RESUMO

Coupled pairs of spin-1/2 nuclei support one singlet state and three triplet states. In many circumstances, the nuclear singlet order, defined as the difference between the singlet population and the mean of the triplet populations, is a long-lived state that persists for a relatively long time in solution. Various methods have been proposed for generating singlet order, starting from nuclear magnetization. This requires the stimulation of singlet-to-triplet transitions by modulated radiofrequency fields. We show that a recently described pulse sequence, known as PulsePol [Schwartz et al., Sci. Adv., 4, eaat8978 (2018)], is an efficient technique for converting magnetization into long-lived singlet order. We show that the operation of this pulse sequence may be understood by adapting the theory of symmetry-based recoupling sequences in magic-angle-spinning solid-state nuclear magnetic resonance (NMR). The concept of riffling allows PulsePol to be interpreted by using the theory of symmetry-based pulse sequences and explains its robustness. This theory is used to derive a range of new pulse sequences for performing singlet-triplet excitation and conversion in solution NMR. Schemes for further enhancing the robustness of the transformations are demonstrated.

6.
J Chem Phys ; 157(10): 104112, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36109226

RESUMO

The nuclear magnetic resonance (NMR) spectra of spin-1/2 pairs contain four peaks, with two inner peaks much stronger than the outer peaks in the near-equivalence regime. We have observed that the strong inner peaks have significantly different linewidths when measurements were performed on a 13C2-labelled triyne derivative. This linewidth difference may be attributed to strong cross-correlation effects. We develop the theory of cross-correlated relaxation in the case of near-equivalent homonuclear spin-1/2 pairs, in the case of a molecule exhibiting strongly anisotropic rotational diffusion. Good agreement is found with the experimental NMR lineshapes.

7.
Phys Chem Chem Phys ; 24(39): 24238-24245, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36168981

RESUMO

Nuclear spin relaxation mechanisms are often difficult to isolate and identify, especially in molecules with internal flexibility. Here we combine experimental work with computation in order to determine the major mechanisms responsible for 31P spin-lattice and singlet order (SO) relaxation in pyrophosphate, a physiologically relevant molecule. Using field-shuttling relaxation measurements (from 2 µT to 9.4 T) and rates calculated from molecular dynamics (MD) trajectories, we identified chemical shift anisotropy (CSA) and spin-rotation as the major mechanisms, with minor contributions from intra- and intermolecular coupling. The significant spin-rotation interaction is a consequence of the relatively rapid rotation of the -PO32- entities around the bridging P-O bonds, and is treated by a combination of MD simulations and quantum chemistry calculations. Spin-lattice relaxation was predicted well without adjustable parameters, and for SO relaxation one parameter was extracted from the comparison between experiment and computation (a correlation coefficient between the rotational motion of the groups).


Assuntos
Difosfatos , Simulação de Dinâmica Molecular , Anisotropia , Espectroscopia de Ressonância Magnética
8.
Chem Commun (Camb) ; 58(80): 11284-11287, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36124877

RESUMO

Synthesis of Kr@C60 is achieved by quantitative high-pressure encapsulation of the noble gas into an open-fullerene, and subsequent cage closure. Krypton is the largest noble gas entrapped in C60 using 'molecular surgery' and Kr@C60 is prepared with >99.4% incorporation of the endohedral atom, in ca. 4% yield from C60. Encapsulation in C60 causes a shift of the 83Kr resonance by -39.5 ppm with respect to free 83Kr in solution. The 83Kr spin-lattice relaxation time T1 is approximately 36 times longer for Kr encapsulated in C60 than for free Kr in solution. This is the first characterisation of a stable Kr compound by 83Kr NMR.

9.
Phys Chem Chem Phys ; 24(12): 7531-7538, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35290424

RESUMO

Nuclear spin singlet states are often found to allow long-lived storage of nuclear magnetization, which can form the basis of novel applications in spectroscopy, imaging, and in studies of dynamic processes. Precisely how long such polarization remains intact, and which factors affect its lifetime is often difficult to determine and predict. We present a combined experimental/computational study to demonstrate that molecular dynamics simulations and ab initio calculations can be used to fully account for the experimentally observed proton singlet lifetimes in ethyl-d5-propyl-d7-maleate in deuterated chloroform as solvent. The correspondence between experiment and simulations is achieved without adjustable parameters. These studies highlight the importance of considering unusual and difficult-to-control mechanisms, such as dipolar couplings to low-gamma solvent nuclei, and to residual paramagnetic species, which often can represent lifetime limiting factors. These results also point to the power of molecular dynamics simulations to provide insights into little-known NMR relaxation mechanisms.

10.
J Chem Phys ; 155(12): 124311, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34598559

RESUMO

The population imbalance between nuclear singlet states and triplet states of strongly coupled spin-1/2 pairs, also known as nuclear singlet order, is well protected against several common relaxation mechanisms. We study the nuclear singlet relaxation of 13C pairs in aqueous solutions of 1,2-13C2 squarate over a range of pH values. The 13C singlet order is accessed by introducing 18O nuclei in order to break the chemical equivalence. The squarate dianion is in chemical equilibrium with hydrogen-squarate (SqH-) and squaric acid (SqH2) characterized by the dissociation constants pK1 = 1.5 and pK2 = 3.4. Surprisingly, we observe a striking increase in the singlet decay time constants TS when the pH of the solution exceeds ∼10, which is far above the acid-base equilibrium points. We derive general rate expressions for chemical-exchange-induced nuclear singlet relaxation and provide a qualitative explanation of the TS behavior of the squarate dianion. We identify a kinetic contribution to the singlet relaxation rate constant, which explicitly depends on kinetic rate constants. Qualitative agreement is achieved between the theory and the experimental data. This study shows that infrequent chemical events may have a strong effect on the relaxation of nuclear singlet order.

11.
Phys Chem Chem Phys ; 22(17): 9703-9712, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32329499

RESUMO

A variety of pulse sequences have been described for converting nuclear spin magnetisation into long-lived singlet order for nuclear spin-1/2 pairs. Existing sequences operate well in two extreme parameter regimes. The magnetisation-to-singlet (M2S) pulse sequence performs a robust conversion of nuclear spin magnetisation into singlet order in the near-equivalent limit, meaning that the difference in chemical shift frequencies of the two spins is much smaller than the spin-spin coupling. Other pulse sequences operate in the strong-inequivalence regime, where the shift difference is much larger than the spin-spin coupling. However both sets of pulse sequences fail in the intermediate regime, where the chemical shift difference and the spin-spin coupling are roughly equal in magnitude. We describe a generalised version of M2S, called gM2S, which achieves robust singlet order excitation for spin systems ranging from the near-equivalence limit well into the intermediate regime. This closes an important gap left by existing pulse sequences. The efficiency of the gM2S sequence is demonstrated numerically and experimentally for near-equivalent and intermediate-regime cases.

12.
J Chem Phys ; 151(23): 234203, 2019 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-31864263

RESUMO

Some nuclear spin systems support long-lived states, which display greatly extended relaxation times relative to the relaxation time of nuclear spin magnetization. In spin-1/2 pairs, such a long-lived state is given by singlet order, representing the difference of the population of the nuclear singlet state and the mean population of the three triplets. In many cases, the experiments with long-lived singlet order are very time-consuming because of the need to wait for singlet order decay before the experiment can be repeated; otherwise, spin order remaining from a previous measurement may lead to experimental artifacts. Here, we propose techniques for fast and efficient singlet order destruction. These methods exploit coherent singlet-triplet conversion; in some cases, multiple conversion steps are introduced. We demonstrate that singlet order destruction enables a dramatic reduction of the waiting time between consecutive experiments and suggest to use this approach in singlet-state Nuclear Magnetic Resonance (NMR) experiments with nearly equivalent spins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...