Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Expert Opin Ther Pat ; 34(3): 141-158, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38557273

RESUMO

INTRODUCTION: Recent years have witnessed great achievements in drug design and development targeting the phosphatidylinositol 3-kinase/protein kinase-B (PI3K/AKT) signaling pathway, a pathway central to cell growth and proliferation. The nearest neighbor protein-protein interaction networks for PI3K and AKT show the interplays between these target proteins which can be harnessed for drug discovery. In this review, we discuss the drug design and clinical development of inhibitors of PI3K/AKT in the past three years. We review in detail the structures, selectivity, efficacy, and combination therapy of 35 inhibitors targeting these proteins, classified based on the target proteins. Approaches to overcoming drug resistance and to minimizing toxicities are discussed. Future research directions for developing combinational therapy and PROTACs of PI3K and AKT inhibitors are also discussed. AREA COVERED: This review covers clinical trial reports and patent literature on inhibitors of PI3K and AKT published between 2020 and 2023. EXPERT OPINION: To address drug resistance and drug toxicity of inhibitors of PI3K and AKT, it is highly desirable to design and develop subtype-selective PI3K inhibitors or subtype-selective AKT1 inhibitors to minimize toxicity or to develop allosteric drugs that can form covalent bonds. The development of PROTACs of PI3Kα or AKT helps to reduce off-target toxicities.


Assuntos
Antineoplásicos , Desenho de Fármacos , Desenvolvimento de Medicamentos , Neoplasias , Patentes como Assunto , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Humanos , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Animais , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Resistencia a Medicamentos Antineoplásicos , Fosfatidilinositol 3-Quinases/metabolismo , Proliferação de Células/efeitos dos fármacos , Terapia de Alvo Molecular
2.
Expert Opin Ther Pat ; 34(1-2): 51-69, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450537

RESUMO

INTRODUCTION: Recent years have seen significant strides in drug developmenttargeting the EGFR/RAS/RAF signaling pathway which is critical forcell growth and proliferation. Protein-protein interaction networksamong EGFR, RAS, and RAF proteins offer insights for drug discovery. This review discusses the drug design and development efforts ofinhibitors targeting these proteins over the past 3 years, detailingtheir structures, selectivity, efficacy, and combination therapy.Strategies to combat drug resistance and minimize toxicities areexplored, along with future research directions. AREA COVERED: This review encompasses clinical trials and patents on EGFR, KRAS,and BRAF inhibitors from 2020 to 2023, including advancements indesign and synthesis of proteolysis targeting chimeras (PROTACs) forprotein degradation. EXPERT OPINION: To tackle drug resistance, designing allosteric fourth-generationEGFR inhibitors is vital. Covalent, allosteric, or combinationaltherapies, along with PROTAC degraders, are key methods to addressresistance and toxicity in KRAS and BRAF inhibitors.


Assuntos
Proteínas Proto-Oncogênicas B-raf , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Proteínas Proto-Oncogênicas B-raf/metabolismo , Patentes como Assunto , Transdução de Sinais , Receptores ErbB , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
3.
Front Med (Lausanne) ; 10: 1211283, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869161

RESUMO

Background: COVID-19 vaccines continue to save people's lives around the world; however, some vaccine adverse events have been a major concern which slowed down vaccination campaigns. Anecdotal evidence pointed to the vaccine effect on menstruation but evidence from the adverse event reporting systems and the biomedical literature was lacking. This study aimed to investigate the physiological changes in women during menstruation amid the COVID-19 vaccination. Methods: A cross-sectional online survey was distributed to COVID-19 vaccinated women from Nov 2021 to Jan 2022. The results were analyzed using the SPSS software. Results: Among the 564 vaccinated women, 52% experienced significant menstrual irregularities post-vaccination compared to before regardless of the vaccine type. The kind of menstrual irregularity varied among the vaccinated women, for example, 33% had earlier menstruation, while 35% reported delayed menstruation. About 31% experienced heavier menstruation, whereas 24% had lighter menstrual flow. About 29% had menstruation last longer, but 13% had it shorter than usual. Noteworthy, the menstrual irregularities were more frequent after the second vaccine shot, and they disappeared within 3 months on average. Interestingly, 24% of the vaccinated women reported these irregularities to their gynecologist. Conclusion: The COVID-19 vaccine may cause physiological disturbances during menstruation. Luckily, these irregularities were short-termed and should not be a reason for vaccine hesitancy in women. Further studies are encouraged to unravel the COVID-19 vaccine adverse effect on women's health.

4.
NPJ Vaccines ; 8(1): 129, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658087

RESUMO

COVID-19 vaccines have been instrumental tools in the fight against SARS-CoV-2 helping to reduce disease severity and mortality. At the same time, just like any other therapeutic, COVID-19 vaccines were associated with adverse events. Women have reported menstrual cycle irregularity after receiving COVID-19 vaccines, and this led to renewed fears concerning COVID-19 vaccines and their effects on fertility. Herein we devised an informatics workflow to explore the causal drivers of menstrual cycle irregularity in response to vaccination with mRNA COVID-19 vaccine BNT162b2. Our methods relied on gene expression analysis in response to vaccination, followed by network biology analysis to derive testable hypotheses regarding the causal links between BNT162b2 and menstrual cycle irregularity. Five high-confidence transcription factors were identified as causal drivers of BNT162b2-induced menstrual irregularity, namely: IRF1, STAT1, RelA (p65 NF-kB subunit), STAT2 and IRF3. Furthermore, some biomarkers of menstrual irregularity, including TNF, IL6R, IL6ST, LIF, BIRC3, FGF2, ARHGDIB, RPS3, RHOU, MIF, were identified as topological genes and predicted as causal drivers of menstrual irregularity. Our network-based mechanism reconstruction results indicated that BNT162b2 exerted biological effects similar to those resulting from prolactin signaling. However, these effects were short-lived and didn't raise concerns about long-term infertility issues. This approach can be applied to interrogate the functional links between drugs/vaccines and other side effects.

5.
Curr Top Med Chem ; 23(27): 2552-2589, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37622697

RESUMO

Vaccines are instrumental tools to fight against novel and re-emerging pathogens and curb pandemics. Vaccination has been an integral part of the multifaceted public health response to the COVID-19 pandemic. Diverse vaccine platforms have been designed and are currently at different stages of development. Some vaccines are still in early biological testing, while others have been launched after being approved by regulatory agencies worldwide. Genomic vaccines that deliver parts of the viral DNA or RNA to host cells have gained popularity recently due to their high efficiency and fast manufacture. Furthermore, recent clinical studies encouraged the use of different vaccine platforms within the primary vaccination course to enhance the efficacy of vaccination. Herein, we discuss COVID-19 genomic vaccines, which deliver viral genetic material to host cells through diverse biotechnology platforms, including viral vector vaccines, messenger RNA nucleic acid vaccines, and DNA nucleic acid vaccines. We compare and contrast vaccine characteristics, composition, and pros and cons among different genomic vaccine platforms as well as non-genomic vaccines. This review summarizes all current knowledge about COVID-19 genomic vaccines, which could be highly valuable to researchers interested in public health and vaccine development.


Assuntos
COVID-19 , Vacinas , Vacinas Virais , Humanos , Vacinas contra COVID-19 , Pandemias/prevenção & controle , COVID-19/prevenção & controle , Genômica , Vacinas Baseadas em Ácido Nucleico , Vacinas de mRNA
6.
Artigo em Inglês | MEDLINE | ID: mdl-37165488

RESUMO

BACKGROUND: Hyperlipidemia is considered a major risk factor for the progress of atherosclerosis. OBJECTIVE: Cholesteryl ester transfer protein (CETP) facilitates the relocation of cholesterol esters from HDL to LDL. CETP inhibition produces higher HDL and lower LDL levels. METHODS: Synthesis of nine benzylamino benzamides 8a-8f and 9a-9c was performed. RESULTS: In vitro biological study displayed potential CETP inhibitory activity, where compound 9c had the best activity with an IC50 of 1.03 µM. Induced-fit docking demonstrated that 8a-8f and 9a-9c accommodated the CETP active site and hydrophobic interaction predominated ligand/ CETP complex formation. CONCLUSION: Pharmacophore mapping showed that this scaffold endorsed CETP inhibitors features and consequently elaborated the high CETP binding affinity.

7.
Viruses ; 15(2)2023 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-36851782

RESUMO

Despite the great technological and medical advances in fighting viral diseases, new therapies for most of them are still lacking, and existing antivirals suffer from major limitations regarding drug resistance and a limited spectrum of activity. In fact, most approved antivirals are directly acting antiviral (DAA) drugs, which interfere with viral proteins and confer great selectivity towards their viral targets but suffer from resistance and limited spectrum. Nowadays, host-targeted antivirals (HTAs) are on the rise, in the drug discovery and development pipelines, in academia and in the pharmaceutical industry. These drugs target host proteins involved in the virus life cycle and are considered promising alternatives to DAAs due to their broader spectrum and lower potential for resistance. Herein, we discuss an important class of HTAs that modulate signal transduction pathways by targeting host kinases. Kinases are considered key enzymes that control virus-host interactions. We also provide a synopsis of the antiviral drug discovery and development pipeline detailing antiviral kinase targets, drug types, therapeutic classes for repurposed drugs, and top developing organizations. Furthermore, we detail the drug design and repurposing considerations, as well as the limitations and challenges, for kinase-targeted antivirals, including the choice of the binding sites, physicochemical properties, and drug combinations.


Assuntos
Antivirais , Proteínas Quinases , Humanos , Antivirais/farmacologia , Reposicionamento de Medicamentos , Descoberta de Drogas , Desenho de Fármacos
8.
Med Chem ; 19(4): 393-404, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36093822

RESUMO

BACKGROUND: Cardiovascular disease is one of the leading causes of death. Atherosclerosis causes arterial constriction or obstruction, resulting in acute cardiovascular illness. Cholesteryl ester transfer protein (CETP) facilitates reverse cholesterol transport. It supports the transfer of cholesteryl ester from HDL to LDL and VLDL. Inhibition of CETP by drugs limits cardiovascular disease by decreasing LDL and increasing HDL. OBJECTIVES: In this study, fourteen trifluoromethyl substituted benzene sulfonamides 6a-6g and 7a-7g were prepared. METHODS: The synthesized molecules were characterized using 1H-NMR, 13C-NMR, IR and HR-MS. They were in vitro tested to estimate their CETP inhibitory activity. RESULTS: In vitro biological evaluation showed that compounds 7d-7f had the highest inhibitory activity with 100% inhibition, while the inhibition observed by compounds 6a-6g, 7a-7c and 7g ranged from 2%-72% at 10 µM concentration. It was found that the addition of a fourth aromatic ring significantly improved the activity, which may be due to the hydrophobic nature of CETP. Also, the presence of ortho-chloro, meta-chloro and para-methyl substituents results in high inhibitory activity. CONCLUSION: The induced fit docking studies revealed that hydrophobic interaction guided ligand/ CETP binding interaction in addition to H-bond formation with Q199, R201, and H232. Furthermore, pharmacophore mapping demonstrated that this series satisfies the functionalities of the current CETP inhibitors.


Assuntos
Doenças Cardiovasculares , Proteínas de Transferência de Ésteres de Colesterol , Humanos , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Sulfonamidas/farmacologia , Farmacóforo
9.
Diagnostics (Basel) ; 12(12)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36552984

RESUMO

Alzheimer's disease (AD) is a polygenic multifactorial neurodegenerative disease that, after decades of research and development, is still without a cure. There are some symptomatic treatments to manage the psychological symptoms but none of these drugs can halt disease progression. Additionally, over the last few years, many anti-AD drugs failed in late stages of clinical trials and many hypotheses surfaced to explain these failures, including the lack of clear understanding of disease pathways and processes. Recently, different epigenetic factors have been implicated in AD pathogenesis; thus, they could serve as promising AD diagnostic biomarkers. Additionally, network biology approaches have been suggested as effective tools to study AD on the systems level and discover multi-target-directed ligands as novel treatments for AD. Herein, we provide a comprehensive review on Alzheimer's disease pathophysiology to provide a better understanding of disease pathogenesis hypotheses and decipher the role of genetic and epigenetic factors in disease development and progression. We also provide an overview of disease biomarkers and drug targets and suggest network biology approaches as new tools for identifying novel biomarkers and drugs. We also posit that the application of machine learning and artificial intelligence to mining Alzheimer's disease multi-omics data will facilitate drug and biomarker discovery efforts and lead to effective individualized anti-Alzheimer treatments.

10.
Pharmaceutics ; 14(9)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36145724

RESUMO

N-(2-fluorphenyl)-6-chloro-4-hydroxy-2-quinolone-3-carboxamide (R19) is a newly synthesized phosphatidylinositol 3-kinase alpha (PI3Kα) inhibitor with promising activity against cancer cells. The purpose of this study was to develop a polymeric nanoparticle (NP) formulation for R19 to address its poor aqueous solubility and to facilitate its future administration in preclinical and clinical settings. NPs were prepared by nanoprecipitation using two polymers: D-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS) and the poloxamer Pluronic P123 in different ratios. Physicochemical characterization of the NPs revealed them to be around 100 nm in size with high monodispersity, a spherical morphology, and an almost neutral surface charge. The NPs achieved ~60% drug loading efficiency and sustained release of R19 for up to 96 h, with excellent colloidal stability in serum-containing cell culture media. NPs containing TPGS enhanced R19's potency against MCF-7 and MDA-MB-231 breast cancer cells in vitro, with half-maximal inhibitory concentrations (IC50) ranging between 1.8 and 4.3 µM compared to free R19, which had an IC50 of 14.7-17.0 µM. The NPs also demonstrated low cytotoxicity against human dermal fibroblasts and more significant induction of apoptosis compared to the free drug, which was correlated with their cellular uptake efficiency. Our findings present a biocompatible NP formulation for the delivery of a cancer-targeted PI3Kα inhibitor, R19, which can further enhance its potency for the treatment of breast cancer and potentially other cancer types.

11.
Pathogens ; 11(7)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35889989

RESUMO

COVID-19 vaccines have been instrumental tools in reducing the impact of SARS-CoV-2 infections around the world by preventing 80% to 90% of hospitalizations and deaths from reinfection, in addition to preventing 40% to 65% of symptomatic illnesses. However, the simultaneous large-scale vaccination of the global population will indubitably unveil heterogeneity in immune responses as well as in the propensity to developing post-vaccine adverse events, especially in vulnerable individuals. Herein, we applied a systems biology workflow, integrating vaccine transcriptional signatures with chemogenomics, to study the pharmacological effects of mRNA vaccines. First, we derived transcriptional signatures and predicted their biological effects using pathway enrichment and network approaches. Second, we queried the Connectivity Map (CMap) to prioritize adverse events hypotheses. Finally, we accepted higher-confidence hypotheses that have been predicted by independent approaches. Our results reveal that the mRNA-based BNT162b2 vaccine affects immune response pathways related to interferon and cytokine signaling, which should lead to vaccine success, but may also result in some adverse events. Our results emphasize the effects of BNT162b2 on calcium homeostasis, which could be contributing to some frequently encountered adverse events related to mRNA vaccines. Notably, cardiac side effects were signaled in the CMap query results. In summary, our approach has identified mechanisms underlying both the expected protective effects of vaccination as well as possible post-vaccine adverse effects. Our study illustrates the power of systems biology approaches in improving our understanding of the comprehensive biological response to vaccination against COVID-19.

12.
Diagnostics (Basel) ; 12(7)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35885645

RESUMO

The human microbiome encodes more than three million genes, outnumbering human genes by more than 100 times, while microbial cells in the human microbiota outnumber human cells by 10 times. Thus, the human microbiota and related microbiome constitute a vast source for identifying disease biomarkers and therapeutic drug targets. Herein, we review the evidence backing the exploitation of the human microbiome for identifying diagnostic biomarkers for human disease. We describe the importance of the human microbiome in health and disease and detail the use of the human microbiome and microbiota metabolites as potential diagnostic biomarkers for multiple diseases, including cancer, as well as inflammatory, neurological, and metabolic diseases. Thus, the human microbiota has enormous potential to pave the road for a new era in biomarker research for diagnostic and therapeutic purposes. The scientific community needs to collaborate to overcome current challenges in microbiome research concerning the lack of standardization of research methods and the lack of understanding of causal relationships between microbiota and human disease.

13.
Molecules ; 27(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35566238

RESUMO

Lung cancer is one of the most common causes of cancer-related deaths worldwide. Monoamine Oxidase-A (MAO-A) enzyme mediates the production of reactive oxygen species (ROS) that trigger DNA damage and oxidative injury of cells resulting in tumor initiation and progression. Available MAO-A inhibitors are used as antidepressants, however, their role as anticancer agents is still under investigation. Ligand- and structure-based drug design approaches guided the discovery and development of novel MAO-A inhibitors. A series of 1H indole-2-carboxamide derivatives was prepared and characterized using 1H-NMR, 13C-NMR, and IR. The antiproliferative effects of MAO-A inhibitors were evaluated using the cell viability assay (MTT), and MAO-A activity was evaluated using MAO-A activity assay. The presumed inhibitors significantly inhibited the growth of lung cell lines in a dose- and time dependent manner. The half maximal inhibitory concentration (IC50) values of MAO-A inhibitors (S1, S2, S4, S7, and S10) were 33.37, 146.1, 208.99, 307.7, and 147.2 µM, respectively, in A549. Glide docking against MAO-A showed that the derivatives accommodate MAO-A binding cleft and engage with key binding residues. MAO-A inhibitors provide significant and consistent evidence on MAO-A activity in lung cancer and present a potential target for the development of new chemotherapeutic agents.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Antidepressivos/farmacologia , Antineoplásicos/farmacologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Simulação de Acoplamento Molecular , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/química , Relação Estrutura-Atividade
14.
J Immunol Res ; 2022: 6031776, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35284577

RESUMO

Introduction: This study is aimed at investigating the immunological response after treating THP-1 cells with gold nanorods conjugated with a phosphatidylinositol 3-kinase (PI3Kα) inhibitor. Methodology. Gold nanorods were synthesized and functionalized with cholesterol-PEG-SH moiety, and the treatment groups were as follows: nanocomplex (a drug-conjugated gold nanorods), free drug (phosphatidylinositol 3-kinase (PI3Kα) inhibitor), and GNR (the nanocarrier; cholesterol-coated gold nanorods). THP-1 cells were differentiated into macrophages and characterized by measuring the expression of macrophage surface markers by flow cytometry. Then, differentiated cells were activated by lipopolysaccharide (LPS). Afterwards, activated macrophages were treated with the different treatments: nanocomplex, free drug, and GNR, for 24 hrs. After treatment, the production of the inflammatory cytokines measured at gene and protein levels by using qPCR and CBA array beads by flow cytometry. Results: Our results show that THP-1 cells were successfully differentiated into macrophages. For inflammatory cytokine expression response, nanocomplex and free drug showed the same expression level of cytokines at gene level, as the expression of IL-1ß, IL-6, and TNF-α was significantly downregulated (p < 0.0005, p < 0.0005, p < 0.00005), respectively, while IL-8, IL-10, and TGF-ß were all upregulated in a significant manner for nanocomplex (p < 0.00005, p < 0.00005, p < 0.00005) and free drug treatment group (p < 0.00005, p < 0.05, p < 0.05) compared to the control untreated group. While in the GNR group, IL-6 and TNF-α were downregulated (p < 0.005, p < 0.00005), and IL-12p40 (p < 0.00005) was upregulated all in a statistically significant manner. While at protein level, cells were treated with our nanocomplex: IL-1ß, IL-6, TNF-α, and IL-12p70 and were significantly decreased (p < 0.00005,p < 0.005,p < 0.05,p < 0.00005), and IL-10 was found to be significantly increased in culture compared to the untreated control group (p < 0.005). For free drug; IL-1ß and IL-12p70 were significantly decreased (p < 0.00005, p < 0.00005), while a significant increase in the secretion levels of IL-10 only was noticed compared to the untreated group (p < 0.005). For GNR treatment groups, IL-1ß, TNF-α, and IL-12p70 were significantly decreased (p < 0.00005, p < 0.05, p < 0.00005). Conclusion: We can conclude that our nanocomplex is a potent effector that prevents tumoral progression by activating three main immunological strategies: switching the surface expression profile of the activated macrophages into a proinflammatory M1-like phenotype, downregulating the expression of proinflammatory cytokines, and upregulating the expression level of anti-inflammatory cytokines.


Assuntos
Ouro , Macrófagos , Citocinas/metabolismo , Ouro/metabolismo , Ouro/farmacologia , Humanos , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Células THP-1
15.
Curr Comput Aided Drug Des ; 18(1): 9-25, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33030135

RESUMO

BACKGROUND: Diabetes mellitus is a chronic metabolic disorder, characterized by hyperglycemia over a prolonged period, disturbance of fat, protein, and carbohydrate metabolism, resulting from defective insulin secretion, insulin action or both. Dipeptidyl peptidase-IV (DPP-IV) inhibitors are relatively a new class of oral hypoglycemic agents that reduce the deterioration of gutderived endogenous incretin hormones secreted in response to food ingestion to stimulate the secretion of insulin from beta cells of the pancreas. OBJECTIVE: In this study, synthesis, characterization, and biological assessment of twelve novel phenanthridine sulfonamide derivatives 3a-3l as potential DPP-IV inhibitors were carried out. The target compounds were docked to study the molecular interactions and binding affinities against the DPP-IV enzyme. METHODS: The synthesized molecules were characterized using 1H-NMR, 13C-NMR, IR, and MS. Quantum-polarized ligand docking (QPLD) was also performed. RESULTS: In vitro biological evaluation of compounds 3a-3l reveals comparable DPP-IV inhibitory activities ranging from 10%-46% at 100 µM concentration, where compound 3d harboring ortho- fluoro moiety exhibited the highest inhibitory activity. QPLD study shows that compounds 3a-3l accommodate DPP-IV binding site and form H-bonding with the R125, E205, E206, S209, F357, R358, K554, W629, S630, Y631, Y662, R669, and Y752 backbones Conclusion: In conclusion, phenanthridine sulfonamides could serve as potential DPP-IV inhibitors that require further structural optimization in order to enhance their inhibitory activity.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Inibidores da Dipeptidil Peptidase IV/farmacologia , Humanos , Hipoglicemiantes/farmacologia , Simulação de Acoplamento Molecular , Fenantridinas , Sulfonamidas
16.
Med Chem ; 18(4): 417-426, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34463228

RESUMO

BACKGROUND: There is an alarming spread of cases of lipid disorders in the world that occur due to harmful lifestyle habits, hereditary risk influences, or as a result of other illnesses or medicines. Cholesteryl Ester Transfer Protein (CETP) is a 476-residue lipophilic glycoprotein that helps in the transport of cholesteryl ester and phospholipids from the atheroprotective HDL to the proatherogenic LDL and VLDL. Inhibition of CETP leads to elevation of HDL cholesterol and reduction of LDL cholesterol and triglycerides; therefore, it is considered a good target for the treatment of hyperlipidemia and its comorbidities. OBJECTIVE: In this research, synthesis, characterization, molecular modeling, and biological evaluation of eight 3,5-bis(trifluoromethyl)benzylamino benzamides 9a-d and 10a-d were carried out. METHODS: The synthesized molecules were characterized using 1H-NMR, 13C-NMR, IR, and HR-MS. They were biologically tested in vitro to estimate their CETP inhibitory activity. RESULTS: These compounds offered inhibitory effectiveness ranging from 42.2% to 100% at a concentration of 10 µM. Compounds bearing unsubstituted three aromatic rings (9a) or ortho-CF3 substituted (9b) were the most effective compounds among their analogs and showed IC50 values of 1.36 and 0.69 µM, respectively. The high docking scores of 9a-d and 10a-d against 4EWS imply that they might be possible CETP inhibitors. Pharmacophore mapping results demonstrate that the series approves the fingerprint of CETP active inhibitors and therefore explains their high binding affinity against CETP binding site. CONCLUSION: This work concludes that 3,5-bis(trifluoromethyl)benzylamino benzamides can serve as a promising CETP inhibitor lead compound.


Assuntos
Benzamidas , Proteínas de Transferência de Ésteres de Colesterol , HDL-Colesterol/metabolismo , Modelos Moleculares
17.
Mol Divers ; 26(2): 1213-1225, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34553298

RESUMO

Diabetes mellitus is a main global health apprehension. Macrovascular illnesses, neuropathy, retinopathy, and nephropathy are considered some of its severe hitches. Gliptins are a group of hypoglycemic agents that inhibit dipeptidyl peptidase-IV (DPP-IV) enzyme and support blood glucose-lowering effect of incretins. In the current research, synthesis, characterization, docking, and biological evaluation of fourteen Schiff's bases 5a-f and 9a-h were carried out. Compound 9f revealed the best in vitro anti-DPP-IV activity of 35.7% inhibition at a concentration of 100 µM. Compounds 9c and 9f with the highest in vitro DPP-IV inhibition were subjected to the in vivo glucose-lowering test using vildagliptin as a positive inhibitor. Vildagliptin, 9c, and 9f showed significant reduction in the blood glucose levels of the treated mice after 30 min of glucose administration. Moreover, induced fit docking showed that these derivatives accommodated the enzyme binding site with comparable docking scores. Schiff's bases can serve as promising lead for the development of new DPP-IV inhibitors.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Animais , Glicemia , Diabetes Mellitus Tipo 2/metabolismo , Dipeptidil Peptidase 4/química , Inibidores da Dipeptidil Peptidase IV/química , Inibidores da Dipeptidil Peptidase IV/farmacologia , Hipoglicemiantes/química , Camundongos , Vildagliptina
18.
Braz. J. Pharm. Sci. (Online) ; 58: e20028, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1403695

RESUMO

Abstract Dyslipidemia is an abnormal lipid profile associated with many common diseases, including coronary heart disease and atherosclerosis. Cholesteryl ester transfer protein (CETP) is a hydrophobic plasma glycoprotein that is responsible for the transfer of cholesteryl ester from high-density lipoprotein athero-protective particles to pro-atherogenic very low-density lipoprotein and low-density lipoprotein particles. The requirement for new CETP inhibitors, which block this process has driven our current work. Here, the synthesis as well as the ligand-based and structure-based design of seven oxoacetamido-benzamides 9a-g with CETP inhibitory activity is described. An in vitro study demonstrated that most of these compounds have appreciable CETP inhibitory activity. Compound 9g showed the highest inhibitory activity against CETP with an IC50 of 0.96 µM. Glide docking data for compounds 9a-g and torcetrapib provide evidence that they are accommodated in the CETP active site where hydrophobic interactions drive ligand/CETP complex formation. Furthermore, compounds 9a-g match the features of known CETP active inhibitors, providing a rationale for their high docking scores against the CETP binding domain. Therefore, these oxoacetamido-benzamides show potential for use as novel CETP inhibitors


Assuntos
Benzamidas/efeitos adversos , Dislipidemias/complicações , Proteínas de Transferência de Ésteres de Colesterol/antagonistas & inibidores , Técnicas In Vitro/métodos , Ésteres do Colesterol , Doença das Coronárias/patologia , Concentração Inibidora 50 , Lipoproteínas HDL/classificação , Lipoproteínas LDL/classificação
19.
Molecules ; 26(19)2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34641563

RESUMO

Monoamine oxidases (MAOs) are oxidative enzymes that catalyze the conversion of biogenic amines into their corresponding aldehydes and ketones through oxidative deamination. Owing to the crucial role of MAOs in maintaining functional levels of neurotransmitters, the implications of its distorted activity have been associated with numerous neurological diseases. Recently, an unanticipated role of MAOs in tumor progression and metastasis has been reported. The chemical inhibition of MAOs might be a valuable therapeutic approach for cancer treatment. In this review, we reported computational approaches exploited in the design and development of selective MAO inhibitors accompanied by their biological activities. Additionally, we generated a pharmacophore model for MAO-A active inhibitors to identify the structural motifs to invoke an activity.


Assuntos
Inibidores da Monoaminoxidase/uso terapêutico , Neoplasias/enzimologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biologia Computacional , Desenho de Fármacos , Desenvolvimento de Medicamentos , Humanos , Monoaminoxidase , Inibidores da Monoaminoxidase/farmacologia , Neoplasias/tratamento farmacológico , Relação Quantitativa Estrutura-Atividade
20.
Vaccines (Basel) ; 9(10)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34696294

RESUMO

Myocarditis and pericarditis have been linked recently to COVID-19 vaccines without exploring the underlying mechanisms, or compared to cardiac adverse events post-non-COVID-19 vaccines. We introduce an informatics approach to study post-vaccine adverse events on the systems biology level to aid the prioritization of effective preventive measures and mechanism-based pharmacotherapy by integrating the analysis of adverse event reports from the Vaccine Adverse Event Reporting System (VAERS) with systems biology methods. Our results indicated that post-vaccine myocarditis and pericarditis were associated most frequently with mRNA COVID-19 vaccines followed by live or live-attenuated non-COVID-19 vaccines such as smallpox and anthrax vaccines. The frequencies of cardiac adverse events were affected by vaccine, vaccine type, vaccine dose, sex, and age of the vaccinated individuals. Systems biology results suggested a central role of interferon-gamma (INF-gamma) in the biological processes leading to cardiac adverse events, by impacting MAPK and JAK-STAT signaling pathways. We suggest that increasing the time interval between vaccine doses minimizes the risks of developing inflammatory adverse reactions. We also propose glucocorticoids as preferred treatments based on system biology evidence. Our informatics workflow provides an invaluable tool to study post-vaccine adverse events on the systems biology level to suggest effective mechanism-based pharmacotherapy and/or suitable preventive measures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...