Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(16)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37631673

RESUMO

In recent years, the research on object detection and tracking is becoming important for the development of advanced driving assistance systems (ADASs) and connected autonomous vehicles (CAVs) aiming to improve safety for all road users involved. Intersections, especially in urban scenarios, represent the portion of the road where the most relevant accidents take place; therefore, this work proposes an I2V warning system able to detect and track vehicles occupying the intersection and representing an obstacle for other incoming vehicles. This work presents a localization algorithm based on image detection and tracking by a single camera installed on a roadside unit (RSU). The vehicle position in the global reference frame is obtained thanks to a sequence of linear transformations utilizing intrinsic camera parameters, camera height, and pitch angle to obtain the vehicle's distance from the camera and, thus, its global latitude and longitude. The study brings an experimental analysis of both the localization accuracy, with an average error of 0.62 m, and detection reliability in terms of false positive (1.9%) and missed detection (3.6%) rates.

2.
Sensors (Basel) ; 23(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37571669

RESUMO

The recent advancements in Intelligent Transportation Systems (ITS) have revealed significant potential for enhancing traffic management through Advanced Driver Assist Systems (ADASs), with benefits for both safety and environment. This research paper proposes a vehicle localization technique based on Kalman filtering, as accurate positioning of the ego-vehicle is essential for the proper functioning of the Traffic Light Advisor (TLA) system. The aim of the TLA is to calculate the most suitable speed to safely reach and pass the first traffic light in front of the vehicle and subsequently keep that velocity constant to overcome the following traffic light, thus allowing safer and more efficient driving practices, thereby reducing safety risks, and minimizing energy consumption. To overcome Global Positioning Systems (GPS) limitations encountered in urban scenarios, a multi-rate sensor fusion approach based on the Kalman filter with map matching and a simple kinematic one-dimensional model is proposed. The experimental results demonstrate an estimation error below 0.5 m on urban roads with GPS signal loss areas, making it suitable for TLA application. The experimental validation of the Traffic Light Advisor system confirmed the expected benefits with a 40% decrease in energy consumption compared to unassisted driving.

3.
Sensors (Basel) ; 22(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36501821

RESUMO

Vehicle teleoperation has the ability to bridge the gap between completely automated driving and manual driving by remotely monitoring and operating autonomous vehicles when their automation fails. Among many challenges related to vehicle teleoperation, the considered ones in this work are variable time delay, saturation of actuators installed in vehicle, and environmental disturbance, which together limit the teleoperation performance. State-of-the-art predictive techniques estimate vehicle states to compensate for the delays, but the predictive states do not account for sudden disturbances that the vehicle observes, which makes the human-picked steer inadequate. This inadequacy of steer deteriorates the path-tracking performance of vehicle teleoperation. In the proposed successive reference-pose-tracking (SRPT) approach, instead of transmitting steering commands, the reference trajectory, in the form of successive reference poses, is transmitted to the vehicle. This paper introduces a method of generation of successive reference poses with a joystick steering wheel and compares the human-in-loop path-tracking performance of the Smith predictor and SRPT approach. Human-in-loop experiments (with 18 different drivers) are conducted using a simulation environment that consists of the integration of a real-time 14-DOF Simulink vehicle model and Unity game engine in the presence of bidirectional variable delays. Scenarios for performance comparison are low adhesion ground, strong lateral wind, tight corners, and sudden obstacle avoidance. Result shows significant improvement in reference tracking and in reducing human effort in all scenarios using the SRPT approach.


Assuntos
Condução de Veículo , Humanos , Automação , Simulação por Computador
4.
Sensors (Basel) ; 22(5)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35271022

RESUMO

Nowadays, railway freight transportation is becoming more and more crucial since it represents the best alternative to road transport in terms of sustainability, pollution, and impact on the environment and on public health. Upgrading the potentiality of this kind of transportation, it would be possible to avoid delays in goods deliveries due to road accidents, traffic jams, and other situation occurring on roads. A key factor in this framework is therefore represented by monitoring and maintenance of the train components. Implementing a real time monitoring of the main components and a predictive maintenance approach, it would be possible to avoid unexpected breakdowns and consequently unavailability of wagons for unscheduled repair activities. As highlighted in recent statistical analysis, one of the elements more critical in case of failure is represented by the brake system. In this view, a real time monitoring of pressure values in some specific points of the system would provide significant information on its health status. In addition, since the braking actions are related to the load present on the convoy, thanks to this kind of monitoring, it would be possible to appreciate the different behavior of the system in case of loaded and unloaded trains. This paper presented an innovative wireless monitoring system to perform brake system diagnostics. A low-power system architecture, in terms of energy harvesting and wireless communication, was developed due to the difficulty in applying a wired monitoring system to a freight convoy. The developed system allows acquiring brake pressure data in critical points in order to verify the correct behavior of the brake system. Experimental results collected during a five-month field test were provided to validate the approach.


Assuntos
Saúde Pública , Monitorização Fisiológica , Fenômenos Físicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...