Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anat Rec (Hoboken) ; 306(9): 2313-2332, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36342958

RESUMO

Persistent arterial hypertension initiates cardiac autonomic imbalance and alters cardiac tissues. Previous studies have shown that neural component contributes to arterial hypertension etiology, maintenance, and progression and leads to brain damage, peripheral neuropathy, and remodeling of intrinsic cardiac neural plexus. Recently, significant structural changes of the intracardiac neural plexus were demonstrated in young prehypertensive and adult hypertensive spontaneously hypertensive rats (SHR), yet structural alterations of intracardiac neural plexus that occur in the aged SHR remain undetermined. Thus, we analyzed the impact of uncontrolled arterial hypertension in old (48-52 weeks) SHR and the age-matched Wistar-Kyoto rats (WKY). Intrinsic cardiac neural plexus was examined using a combination of immunofluorescence confocal microscopy and transmission electron microscopy in cardiac sections and whole-mount preparations. Our findings demonstrate that structural changes of intrinsic cardiac neural plexus caused by arterial hypertension are heterogeneous and may support recent physiological implications about cardiac denervation occurring together with the hyperinnervation of the SHR heart. We conclude that arterial hypertension leads to (i) the decrease of the neuronal body area, the thickness of atrial nerves, the number of myelinated nerve fibers, unmyelinated axon area and cumulative axon area in the nerve, and the density of myocardial nerve fibers, and (ii) the increase in myelinated nerve fiber area and density of neuronal bodies within epicardiac ganglia. Despite neuropathic alterations of myelinated fibers were exposed within intracardiac nerves of both groups, SHR and WKY, we consider that the determined significant changes in structure of intrinsic cardiac neural plexus were predisposed by arterial hypertension.


Assuntos
Hipertensão , Ratos , Animais , Ratos Endogâmicos WKY , Ratos Endogâmicos SHR , Hipertensão Essencial , Fibras Nervosas Mielinizadas , Axônios
2.
Sci Rep ; 12(1): 17851, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284123

RESUMO

Recombinant adeno-associated viruses (rAAV) are extensively used in both research and clinical applications. Despite significant advances, there is a lack of short promoters able to drive the expression of virus delivered genes in specific classes of neurons. We designed an efficient rAAV vector suitable for the rAAV-mediated gene expression in cortical interneurons, mainly in the parvalbumin expressing cells. The vector includes a short parvalbumin promoter and a specialized poly(A) sequence. The degree of conservation of the parvalbumin gene adjoining non-coding regions was used in both the promoter design and the selection of the poly(A) sequence. The specificity was established by co-localizing the fluorescence of the virus delivered eGFP and the antibody for a neuronal marker. rAAV particles were injected in the visual cortex area V1/V2 of adult rats (2-4 months old). Neurons expressing the virus delivered eGFP were mainly positive for interneuronal markers: 66.5 ± 2.8% for parvalbumin, 14.6 ± 2.4% for somatostatin, 7.1 ± 1.2% for vasoactive intestinal peptide, 2.8 ± 0.6% for cholecystokinin. Meanwhile, only 2.1 ± 0.5% were positive for CaMKII, a marker for principal cells in the cortex. The efficiency of the construct was verified by optogenetic experiments: the expression of the virus delivered ChR2 channels was sufficient to evoke by blue light laser high frequency bursts of action potentials in putative fast spiking neurons. We conclude that our promoter allows highly specific expression of the rAAV delivered cDNAs in cortical interneurons with a strong preference for the parvalbumin positive cells.


Assuntos
Parvalbuminas , Peptídeo Intestinal Vasoativo , Animais , Ratos , Parvalbuminas/genética , Peptídeo Intestinal Vasoativo/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Interneurônios/metabolismo , Dependovirus/genética , Somatostatina/metabolismo , Colecistocinina/metabolismo
3.
Histol Histopathol ; 37(10): 955-970, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35356999

RESUMO

Persistent arterial hypertension leads to structural and functional remodeling of the heart resulting in myocardial ischemia, fibrosis, hypertrophy, and eventually heart failure. Previous studies have shown that individual neurons composing the intracardiac ganglia are hypertrophied in the failing human, dog, and rat hearts, indicating that this process involves changes in cardiac innervation. However, despite a wealth of data on changes in intrinsic cardiac ganglionated plexus (GP) in late-stage disease models, little is known about the effects of hypertension on cardiac innervation during the early onset of heart failure development. Thus, we examined the impact of early hypertension on the structural organization of the intrinsic cardiac ganglionated plexus in juvenile (8-9 weeks) and adult (12-18 weeks) spontaneously hypertensive (SH) and age-matched Wistar-Kyoto (WKY) rats. GP was studied using a combination of immunofluorescence confocal microscopy and transmission electron microscopy in whole-mount preparations and tissue sections. Here, we report intrinsic cardiac GP of SH rats to display multiple structural alterations: (i) a decrease in the intracardiac neuronal number, (ii) a marked reduction in axonal diameters and their proportion within intracardiac nerves, (iii) an increased density of myocardial nerve fibers, and (iv) neuropathic abnormalities in cardiac glial cells. These findings represent early neurological changes of the intrinsic ganglionated plexus of the heart introduced by early-onset arterial hypertension in young adult SH rats.


Assuntos
Insuficiência Cardíaca , Hipertensão , Ratos , Humanos , Cães , Animais , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Coração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...