Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bull Entomol Res ; 107(3): 313-321, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27819202

RESUMO

The simultaneous infestation of a plant by several species of herbivores may affect the attractiveness of plants to the natural enemies of one of the herbivores. We studied the effect of coconut fruits infested by the pests Aceria guerreronis and Steneotarsonemus concavuscutum, which are generally found together under the coconut perianth. The predatory mite Neoseiulus baraki produced lower numbers of offspring on fruits infested with S. concavuscutum and on fruits infested with both prey than on fruits with A. guerreronis only. The predators were attracted by odours emanating from coconuts with A. guerreronis, but not by odours from coconuts with S. concavuscutum, even when A. guerreronis were present on the same fruit. Fewer N. baraki were recaptured on fruits with both prey or with S. concavuscutum than on fruits with only A. guerreronis. Furthermore, the quality of A. guerreronis from singly and multiply infested coconuts as food for N. baraki did not differ. Concluding, our results suggest that N. baraki does not perform well when S. concavuscutum is present on the coconuts, and the control of A. guerreronis by N. baraki may be negatively affected by the presence of S. concavuscutum.


Assuntos
Quimiotaxia , Cocos , Herbivoria , Ácaros/fisiologia , Comportamento Predatório , Compostos Orgânicos Voláteis/metabolismo , Animais , Cocos/crescimento & desenvolvimento , Sinais (Psicologia) , Feminino , Frutas , Controle Biológico de Vetores , Densidade Demográfica
2.
J Evol Biol ; 29(3): 665-71, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-26688127

RESUMO

Animals often respond to danger by raising alarm to inform others. Alarm signals come in many different forms, such as visual or mechanical display, sound or odour. Some animals produce vocal alarm signals that vary with the level of danger. For chemical alarm signals, virtually nothing is known about such context-dependent signalling due to a general notion that alarm pheromones have fixed compositions. Here, we show that larvae of the Western Flower Thrips (Frankliniella occidentalis) produce an alarm pheromone whose composition varies with the level of danger they face: the presence of a relatively harmless predator or a very dangerous predator, that is either actually attacking or not. The frequency of alarm pheromone excretion increases with the level of danger. Moreover, the composition of excreted alarm pheromone varies in the relationship between total and relative amount of the putative two components, decyl acetate (DAc) and dodecyl acetate (DDAc). When pheromone is excreted with a predator present but not attacking, the percentage DDAc increases with the total amount of pheromone. When a predator does attack, however, the relationship between percentage DDAc and total amount of pheromone is reversed. Taken together, the alarm signal of thrips larvae appears to be context dependent, which to our knowledge is the first report of context-dependent composition of an alarm pheromone.


Assuntos
Comportamento Animal , Feromônios/química , Feromônios/fisiologia , Tisanópteros/fisiologia , Acetatos/análise , Animais , Cromatografia Gasosa , Larva , Ácaros , Comportamento Predatório
3.
Exp Appl Acarol ; 67(3): 411-21, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26255279

RESUMO

Amblyseius largoensis (Muma) (Acari: Phytoseiidae) and Euseius alatus De Leon (Acari: Phytoseiidae) are predatory mites that are mostly found on leaves and on the exposed fruit surface of coconut plants. Their morphology hampers the access to the microhabitat occupied by Aceria guerreronis Keifer (Acari: Eriophyidae), the most important pest of coconut fruits throughout the world. However, it was suggested that they can prey on A. guerreronis under natural conditions when this pest leaves its refuge to disperse. Since the trophic interactions between A. largoensis or E. alatus and A. guerreronis are unknown, we compare the frequencies of occurrence of A. largoensis and E. alatus under the bracts of coconut fruits and on coconut leaflets. In addition, because phytoseiids feed by liquid ingestion, we used molecular analysis to confirm the potential role of A. largoensis or E. alatus as predators of A. guerreronis and to assess how fast the A. guerreronis DNA fragment is degradated in the A. largoensis digestive tract. Our study demonstrated that E. alatus was only present on coconut leaflets whereas A. largoensis was found mostly on leaflets and, to a much lesser extent, under the bracts of coconuts. Species-specific ITS primers designed for A. guerreronis were shown to have a high degree of specificity for A. guerreronis DNA and did not produce any PCR product from DNA templates of the other insects and mites associated with the coconut agroecosystem. Based on molecular analysis, we confirmed that the predatory mites, A. largoensis and E. alatus, had preyed on the coconut mite in the field. Overall the predatory mites collected in the field exhibited low levels of predation (26.7% of A. largoensis and 8.9% of E. alatus tested positive for A. guerreronis DNA). The fragment of A. guerreronis DNA remained intact for a very short time (no more than 6 h after feeding) in the digestive tract of A. largoensis.


Assuntos
Ácaros/fisiologia , Controle Biológico de Vetores , Comportamento Predatório , Animais , Agentes de Controle Biológico , Brasil , Cocos/crescimento & desenvolvimento , Nozes/crescimento & desenvolvimento , Reação em Cadeia da Polimerase
4.
Ann Bot ; 115(7): 1015-51, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26019168

RESUMO

BACKGROUND: Plants are hotbeds for parasites such as arthropod herbivores, which acquire nutrients and energy from their hosts in order to grow and reproduce. Hence plants are selected to evolve resistance, which in turn selects for herbivores that can cope with this resistance. To preserve their fitness when attacked by herbivores, plants can employ complex strategies that include reallocation of resources and the production of defensive metabolites and structures. Plant defences can be either prefabricated or be produced only upon attack. Those that are ready-made are referred to as constitutive defences. Some constitutive defences are operational at any time while others require activation. Defences produced only when herbivores are present are referred to as induced defences. These can be established via de novo biosynthesis of defensive substances or via modifications of prefabricated substances and consequently these are active only when needed. Inducibility of defence may serve to save energy and to prevent self-intoxication but also implies that there is a delay in these defences becoming operational. Induced defences can be characterized by alterations in plant morphology and molecular chemistry and are associated with a decrease in herbivore performance. These alterations are set in motion by signals generated by herbivores. Finally, a subset of induced metabolites are released into the air as volatiles and function as a beacon for foraging natural enemies searching for prey, and this is referred to as induced indirect defence. SCOPE: The objective of this review is to evaluate (1) which strategies plants have evolved to cope with herbivores and (2) which traits herbivores have evolved that enable them to counter these defences. The primary focus is on the induction and suppression of plant defences and the review outlines how the palette of traits that determine induction/suppression of, and resistance/susceptibility of herbivores to, plant defences can give rise to exploitative competition and facilitation within ecological communities "inhabiting" a plant. CONCLUSIONS: Herbivores have evolved diverse strategies, which are not mutually exclusive, to decrease the negative effects of plant defences in order to maximize the conversion of plant material into offspring. Numerous adaptations have been found in herbivores, enabling them to dismantle or bypass defensive barriers, to avoid tissues with relatively high levels of defensive chemicals or to metabolize these chemicals once ingested. In addition, some herbivores interfere with the onset or completion of induced plant defences, resulting in the plant's resistance being partly or fully suppressed. The ability to suppress induced plant defences appears to occur across plant parasites from different kingdoms, including herbivorous arthropods, and there is remarkable diversity in suppression mechanisms. Suppression may strongly affect the structure of the food web, because the ability to suppress the activation of defences of a communal host may facilitate competitors, whereas the ability of a herbivore to cope with activated plant defences will not. Further characterization of the mechanisms and traits that give rise to suppression of plant defences will enable us to determine their role in shaping direct and indirect interactions in food webs and the extent to which these determine the coexistence and persistence of species.


Assuntos
Artrópodes/fisiologia , Evolução Biológica , Cadeia Alimentar , Herbivoria , Imunidade Vegetal , Animais
5.
Heredity (Edinb) ; 114(3): 327-32, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25407077

RESUMO

Compared with diploid species, haplodiploids suffer less inbreeding depression because male haploidy imposes purifying selection on recessive deleterious alleles. However, alleles of genes only expressed in the diploid females are protected in heterozygous individuals. This leads to the prediction that haplodiploids suffer more from inbreeding effects on life-history traits controlled by genes with female-limited expression. To test this, we used a wild population of the haplodiploid mite Tetranychus urticae. First, negative effects of inbreeding were investigated by comparing maturation rate, juvenile survival, oviposition rate and longevity between lines created by three generations of either outbreeding or mother-son inbreeding. Second, purging through inbreeding was investigated by comparing the intensity of inbreeding depression between outbred families with known inbreeding/outbreeding mating histories. Negative effects of inbreeding and evidence for purging were found for the female trait oviposition rate, but not for juvenile survival and longevity. Both male and female maturation rate were negatively affected by inbreeding, most likely due to maternal effects because inbred offspring of outbred mothers was not affected. These results support the hypothesis that, in haplodiploids inbreeding effects and genetic variation due to deleterious recessive alleles may depend on gender.


Assuntos
Diploide , Haploidia , Endogamia , Tetranychidae/genética , Animais , Feminino , Genética Populacional , Modelos Lineares , Masculino , Modelos Genéticos , Oviposição , Maturidade Sexual
6.
Exp Appl Acarol ; 64(4): 445-54, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25033768

RESUMO

For the coconut mite, Aceria guerreronis Keifer, its host plant, the coconut palm, is not merely a source of food, but more generally a habitat to live in for several generations. For these minute organisms, finding a new plant is difficult and risky, especially because their main mode of dispersal is passive drifting with the wind and because they are highly specialized on their host plant. Consequently, the probability of landing on a suitable host is very low, let alone to land in their specific microhabitat within the host. How coconut mites manage to find their microhabitat within a host plant is still underexplored. We tested the hypothesis that they use volatile chemical information emanating from the plant to find a specific site within their host plants and/or use non-volatile plant chemicals to stay at a profitable site on the plant. This was investigated in a Y-tube olfactometer (i.e. under conditions of a directed wind flow) and on cross-shaped arenas (i.e. under conditions of turbulent air) that either allowed contact with odour sources or not. The mites had to choose between odours from specific parts (leaflet, spikelet or fruit) of a non-infested coconut plant and clean air as the alternative. In the olfactometer experiments, no mites were found to reach the upwind end of the Y-tube: <5 % of the mites were able to pass the bifurcation of the "Y". On the cross-shaped arenas, however, a large number of coconut mites was found only when the arm of the arena contained discs of fruit epidermis and contact with these discs was allowed. The results suggest that coconut mites on palm trees are not attracted to specific sites on the plant by volatile plant chemicals, but that they arrested once they contact the substrate of specific sites. Possibly, they perceive non-volatile chemicals, but these remain to be identified.


Assuntos
Cocos/parasitologia , Ácaros/fisiologia , Animais , Ecossistema , Interações Hospedeiro-Patógeno , Ácaros/crescimento & desenvolvimento , Odorantes , Olfatometria
7.
Exp Appl Acarol ; 64(4): 429-43, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25033769

RESUMO

For more than three decades the coconut mite Aceria guerreronis Keifer is one of the most important pests of coconut palms and has recently spread to many coconut production areas worldwide. Colonization of coconut palms is thought to arise from mites dispersing aerially after take-off from other plants within the same plantation or other plantations. The underlying dispersal behaviour of the mite at take-off, in the airborne state and after landing is largely unknown and this is essential to understand how they spread from tree to tree. In this article we studied whether take-off to aerial dispersal of coconut mites is preceded by characteristic behaviour, whether there is a correlation between the body position preceding aerial dispersal and the direction of the wind, and whether the substrate (outer surface of coconut bracts or epidermis) and the wind speed matter to the decision to take-off. We found that take-off can sometimes be preceded by a raised body stance, but more frequently take-off occurs while the mite is walking or resting on its substrate. Coconut mites that become airborne assumed a body stance that had no relation to the wind direction. Take-off was suppressed on a substrate providing food to coconut mites, but occurred significantly more frequently on the outer surface of coconut bracts than on the surface of the fruit. For both substrates, take-off frequency increased with wind speed. We conclude that coconut mites have at least some degree of control over take-off for aerial dispersal and that there is as yet no reason to infer that a raised body stance is necessary to become airborne.


Assuntos
Distribuição Animal/fisiologia , Cocos/parasitologia , Ácaros/crescimento & desenvolvimento , Animais , Feminino , Masculino , Gravação em Vídeo , Vento
8.
Heredity (Edinb) ; 113(6): 495-502, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24865602

RESUMO

When phylogenetically close, two competing species may reproductively interfere, and thereby affect their population dynamics. We tested for reproductive interference (RI) between two congeneric haplo-diploid spider mites, Tetranychus evansi and Tetranychus urticae, by investigating their interspecific mating and their population dynamics when they competed on the same plants. They are both pests of tomato, but differ in the host plant defences that they suppress or induce. To reduce the effect of plant-mediated interaction, we used a mutant tomato plant lacking jasmonate-mediated anti-herbivore defences in the competition experiment. In addition, to manipulate the effect of RI, we introduced founder females already mated with conspecific males in mild RI treatments or founder, virgin females in strong RI treatments (in either case together with heterospecific and conspecific males). As females show first-male sperm precedence, RI should occur especially in the founder generation under strong RI treatments. We found that T. urticae outcompeted T. evansi in mild, but not in strong RI treatments. Thus, T. evansi interfered reproductively with T. urticae. This result was supported by crossing experiments showing frequent interspecific copulations, strong postmating reproductive isolation and a preference of T. evansi males to mate with T. urticae (instead of conspecific) females, whereas T. urticae males preferred conspecific females. We conclude that interspecific mating comes at a cost due to asymmetric mate preferences of males. Because RI by T. evansi can improve its competitiveness to T. urticae, we propose that RI partly explains why T. evansi became invasive in Europe where T. urticae is endemic.


Assuntos
Hibridização Genética/genética , Reprodução/genética , Tetranychidae/genética , Animais , Comportamento Competitivo , Feminino , Herbivoria , Solanum lycopersicum , Masculino , Preferência de Acasalamento Animal , Dinâmica Populacional , Tetranychidae/classificação
9.
Exp Appl Acarol ; 62(4): 449-61, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24233102

RESUMO

Ambulatory movement of plant-feeding mites sets limits to the distances they can cover to reach a new food source. In absence of food-related cues these limits are determined by survival, walking activity, walking path tortuosity and walking speed, whereas in presence of food the limits are also determined by the ability to orient and direct the path towards the food source location. For eriophyoid mites such limits are even more severe because they are among the smallest mites on earth, because they have only two pairs of legs and because they are very sensitive to desiccation. In this article we test how coconut mites (Aceria guerreronis Keifer) are constrained in their effective displacement by their ability to survive in absence of food (meristematic tissue under the coconut perianth) and by their ability to walk and orient in absence or presence of food-related cues. We found that the mean survival time decreased with increasing temperature and decreasing humidity. Under climatic conditions representative for the Tropics (27 °C and 75 % relative humidity) coconut mites survived on average for 11 h and covered 0.4 m, representing the effective linear displacement away from the origin. Within a period of 5 h, coconut mites collected from old fruits outside the perianth moved further away from the origin than mites collected under the perianth of young fruits. However, in the presence of food-related cues coconut mites traveled over 30 % larger distances than in absence of these cues. These results show that ambulatory movement of eriophyoid mites may well bring them to other coconuts within the same bunch and perhaps also to other bunches on the same coconut palm, but it is unlikely to help them move from palm to palm, given that palms usually do not touch each other.


Assuntos
Cocos/fisiologia , Locomoção , Ácaros/fisiologia , Animais , Sinais (Psicologia) , Comportamento Alimentar , Herbivoria
10.
Exp Appl Acarol ; 60(2): 127-38, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23238958

RESUMO

Tomato plants have their leaves, petioles and stems covered with glandular trichomes that protect the plant against two-spotted spider mites and many other herbivorous arthropods, but also hinder searching by phytoseiid mites and other natural enemies of these herbivores. This trichome cover creates competitor-free and enemy-free space for the tomato russet mite (TRM) Aculops lycopersici (Acari: Eriophyidae), being so minute that it can seek refuge and feed inbetween the glandular trichomes on tomato cultivars currently used in practice. Indeed, several species of predatory mites tested for biological control of TRM have been reported to feed and reproduce when offered TRM as prey in laboratory experiments, yet in practice these predator species appeared to be unable to prevent TRM outbreaks. Using the phytoseiid mite, Amblydromalus limonicus, we found exactly the same, but also obtained evidence for successful establishment of a population of this predatory mite on whole plants that had been previously infested with TRM. This successful establishment may be explained by our observation that the defensive barrier of glandular plant trichomes is literally dropped some time after TRM infestation of the tomato plants: the glandular trichome heads first rapidly develop a brownish discoloration after which they dry out and fall over onto the plant surface. Wherever TRM triggered this response, predatory mites were able to successfully establish a population. Nevertheless, biological control was still unsuccessful because trichome deterioration in TRM-infested areas takes a couple of days to take effect and because it is not a systemic response in the plant, thereby enabling TRM to seek temporary refuge from predation in pest-free trichome-dense areas which continue to be formed while the plant grows. We formulate a hypothesis unifying these observations into one framework with an explicit set of assumptions and predictions to be tested in future experiments.


Assuntos
Ácaros/fisiologia , Folhas de Planta/anatomia & histologia , Folhas de Planta/parasitologia , Solanum lycopersicum/parasitologia , Tricomas/parasitologia , Animais , Feminino , Herbivoria , Oviposição , Comportamento Predatório
11.
Evol Biol ; 39(3): 301-310, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22923852

RESUMO

We review models of the Baldwin effect, i.e., the hypothesis that adaptive learning (i.e., learning to improve fitness) accelerates genetic evolution of the phenotype. Numerous theoretical studies scrutinized the hypothesis that a non-evolving ability of adaptive learning accelerates evolution of genetically determined behavior. However, their results are conflicting in that some studies predict an accelerating effect of learning on evolution, whereas others show a decelerating effect. We begin by describing the arguments underlying the hypothesis on the Baldwin effect and identify the core argument: adaptive learning influences the rate of evolution because it changes relative fitness of phenotypes. Then we analyze the theoretical studies of the Baldwin effect with respect to their model of adaptive learning and discuss how their contrasting results can be explained from differences in (1) the ways in which the effect of adaptive learning on the phenotype is modeled, (2) the assumptions underlying the function used to quantify fitness and (3) the time scale at which the evolutionary rate is measured. We finish by reviewing the specific assumptions used by the theoretical studies of the Baldwin effect and discuss the evolutionary implications for cases where these assumptions do not hold.

12.
Exp Appl Acarol ; 54(2): 119-24, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21400191

RESUMO

Since inbreeding in Tetranychus urticae can reduce offspring fitness, sexual selection may favour disassortative mate choice with respect to relatedness of the mating partners. We tested whether T. urticae shows this preference for mating with unrelated partners. We chose an experimental set-up with high potential for female choosiness, since females only mate once and are therefore expected to be the choosier gender. An adult virgin female was placed together with two adult males from the same population. One male was unrelated and the other male was related-a brother with whom she had grown up. Significantly more copulations (64%) took place with the unrelated male. Time to mating did not depend on the female-to-male relatedness. The remaining (non-copulating) male tried to interfere with the ongoing mating in the majority of cases, but this interference did not depend on the female-to-male relatedness. These results imply that T. urticae (a) can recognize kin (via genetic and/or environmental similarity) and (b) has the potential to avoid inbreeding through mate choice.


Assuntos
Endogamia , Preferência de Acasalamento Animal , Tetranychidae/fisiologia , Animais , Feminino , Masculino , Tetranychidae/genética
13.
Exp Appl Acarol ; 54(2): 125-38, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21321807

RESUMO

The responses of the predatory mite P. persimilis to herbivore-induced plant volatiles are at least partly genetically determined. Thus, there is potential for the evolution of this behaviour by natural selection. We tested whether distinct predator genotypes with contrasting responses to a specific herbivore-induced plant volatile, i.e. methyl salicylate (MeSa), could be found in a base population collected in the field (Sicily). To this end, we imposed purifying selection on individuals within iso-female lines of P. persimilis such that the lines were propagated only via the individual that showed either a preference or avoidance of MeSa. The responses of the lines were characterized as the mean proportion of individuals choosing MeSa when given a choice between MeSa and clean air. Significant variation in predator responses was detected among iso-female lines, thus confirming the presence of a genetic component for this behaviour. Nevertheless, we did not find a significant difference in the response to MeSa between the lines that were selected to avoid MeSa and the lines selected to prefer MeSa. Instead, in the course of selection the lines selected to avoid MeSa shifted their mean response towards a preference for MeSa. An inverse, albeit weaker, shift was detected for the lines selected to prefer MeSa. We discuss the factors that may have caused the apparent lack of a response to selection within iso-female line in this study and propose experimental approaches that address them.


Assuntos
Comportamento Animal/efeitos dos fármacos , Ácaros/fisiologia , Salicilatos/farmacologia , Animais , Comportamento de Escolha , Feminino , Ácaros/genética , Plantas/química , Comportamento Predatório , Seleção Genética
14.
Exp Appl Acarol ; 53(4): 349-60, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21061048

RESUMO

Dispersal to new hosts is an important process for an invasive herbivore, such as the two-spotted spider mite. A recent study, using artificial selection experiments, has suggested that genetic variation and genetic trade-offs are present for propensity to disperse in this species. However, due to the experimental setup alternative explanations for the response to selection could not be ruled out. Using an altered setup, we investigated whether the propensity for ambulatory dispersal differs genetically between individuals and whether genetic correlations with life-history traits exist. Upward and downward selection on propensity to leave the colony was performed for seven generations in four replicate artificial selection experiments and the results were compared to control lines. No consistent responses to selection were found and no significant effect on life-history traits (oviposition rate, juvenile survival, development rate and number of adult offspring) or sex ratio was present across the replicates. The data suggest that our base population of spider mites harbours at best a low amount of additive genetic variation for this behaviour.


Assuntos
Comportamento Animal , Seleção Genética , Tetranychidae/genética , Migração Animal , Animais , Feminino , Masculino , Oviposição , Dinâmica Populacional , Razão de Masculinidade , Tetranychidae/fisiologia
15.
Exp Appl Acarol ; 48(1-2): 115-42, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19160062

RESUMO

Given that 14 out of the 25 currently described species of Dermanyssus Dugès, 1834, are morphologically very close to each another, misidentifications may occur and are suspected in at least some records. One of these 14 species is the red fowl mite, D. gallinae (De Geer, 1778), a blood parasite of wild birds, but also a pest in the poultry industry. Using molecular phylogenetic tools we aimed to answer two questions concerning host specificity and synanthropicity: (1) is D. gallinae the only species infesting European layer farms?, and (2) can populations of D. gallinae move from wild to domestic birds and vice versa? Mitochondrial cytochrome oxidase I gene sequences were obtained from 73 Dermanyssus populations collected from nests of wild European birds and from poultry farms and these were analyzed using maximum parsimony and Bayesian inference. Mapping of the observed host range on the obtained topology and correlation with behavioural observations revealed that (1) host range is strongly dependent on some ecological parameters (e.g. nest hygiene, exposure to pesticides and predators), that (2) out of five species under test, synanthropic populations were found only in lineages of D. gallinae, and that (3) at least some haplotypes found in wild birds were very close to those found in association with domestic birds.


Assuntos
Aves/parasitologia , Ácaros/classificação , Filogenia , Animais , Complexo IV da Cadeia de Transporte de Elétrons/química , França , Haplótipos , Interações Hospedeiro-Parasita , Ácaros/enzimologia , Ácaros/genética , Aves Domésticas/parasitologia , Análise de Sequência de DNA
16.
Exp Appl Acarol ; 33(1-2): 21-30, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15285135

RESUMO

Although odour-mediated interactions among plants, spider mites and predatory mites have been extensively studied above-ground, belowground studies are in their infancy. In this paper, we investigate whether feeding by rust mites (Aceria tulipae) cause tulip bulbs to produce odours that attract predatory mites (Neoseiulus cucumeris). Since our aim was to demonstrate such odours and not their relevance under soil conditions, the experiments were carried out using a classic Y-tube olfactometer in which the predators moved on a Y-shaped wire in open air. We found that food-deprived female predators can discriminate between odours from infested bulbs and odours from uninfested bulbs or artificially wounded bulbs. No significant difference in attractiveness to predators was found between clean bulbs and bulbs either wounded 30 min or 3 h before the experiment. These results indicate that it may not be simply the wounding of the bulbs, but rather the feeding by rust mites, which causes the bulb to release odours that attract N. cucumeris. Since bulbs are belowground plant structures, the olfactometer results demonstrate the potential for odour-mediated interactions in the soil. However, their importance in the actual soil medium remains to be demonstrated.


Assuntos
Ácaros/fisiologia , Odorantes , Doenças das Plantas/parasitologia , Óleos de Plantas/metabolismo , Tulipa/fisiologia , Animais , Feminino , Estruturas Vegetais , Comportamento Predatório , Tulipa/parasitologia , Volatilização
17.
J Evol Biol ; 17(3): 692-700, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15149411

RESUMO

Wolbachia bacteria are transmitted from mother to offspring via the cytoplasm of the egg. When mated to males infected with Wolbachia bacteria, uninfected females produce unviable offspring, a phenomenon called cytoplasmic incompatibility (CI). Current theory predicts that 'sterilization' of uninfected females by infected males confers a fitness advantage to Wolbachia in infected females. When the infection is above a threshold frequency in a panmictic population, CI reduces the fitness of uninfected females below that of infected females and, consequently, the proportion of infected hosts increases. CI is a mechanism that benefits the bacteria but, apparently, not the host. The host could benefit from avoiding incompatible mates. Parasite load and disease resistance are known to be involved in mate choice. Can Wolbachia also be implicated in reproductive behaviour? We used the two-spotted spider mite - Wolbachia symbiosis to address this question. Our results suggest that uninfected females preferably mate to uninfected males while infected females aggregate their offspring, thereby promoting sib mating. Our data agrees with other results that hosts of Wolbachia do not necessarily behave as innocent bystanders - host mechanisms that avoid CI can evolve.


Assuntos
Evolução Biológica , Oviposição/fisiologia , Comportamento Sexual Animal , Tetranychidae/microbiologia , Tetranychidae/fisiologia , Wolbachia/fisiologia , Animais , Citoplasma/microbiologia , Feminino , Masculino , Reprodução/fisiologia
18.
Exp Appl Acarol ; 29(3-4): 253-64, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14635812

RESUMO

Wolbachia bacteria manipulate host reproduction by inducing cytoplasmic incompatibility (CI) and sex ratio distortion. Wolbachia are transmitted from mother to offspring through the cytoplasm of the egg. Therefore, reproduction of Wolbachia is tightly coupled to reproduction of its host. Mathematical analysis predicts that in the course of evolution, traits that reduce the physiological costs of the infection will be selectively favored. For a Wolbachia-host system to evolve, traits under selection must have some genetic component and variation must be present in the population. We have previously established that highly inbred isofemale lines of the two-spotted spider mite Tetranychus urticae may differ regarding the effects of infection by Wolbachia, and that at least some of the traits affected had a genetic component. However, the effects measured could have been affected by the fact that the lines were severely inbred prior to the experiments. In this paper we attempt to distinguish between the effects of Wolbachia, isofemale line, and inbreeding. We show that Wolbachia did not affect longevity but infected females produced smaller clutch sizes, more daughter-biased sex ratios and had decreased F1 mortality; between-line variation was found for clutch size, F1 mortality and sex ratio; finally, inbreeding resulted in an overall reduction of clutch sizes, and a change in survival curves and mean longevity.


Assuntos
Tetranychidae/microbiologia , Wolbachia/fisiologia , Animais , Feminino , Variação Genética , Genótipo , Endogamia , Masculino , Razão de Masculinidade , Estatísticas não Paramétricas , Simbiose/fisiologia , Tetranychidae/genética , Tetranychidae/fisiologia
19.
Exp Appl Acarol ; 29(1-2): 1-12, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14580056

RESUMO

Wolbachia are cytoplasmically transmitted bacteria that infect several species of mites. In the two-spotted spider mite Tetranychus urticae Koch this symbiont can induce reproductive incompatibility. Wolbachia-induced reproductive incompatibility is observed in crosses between Wolbachia-infected (W) males and uninfected (U) females. This incompatibility is expressed in F1 broods as male-biased sex ratios, an effect called cytoplasmic incompatibility (CI). However, in the two-spotted spider mite, Wolbachia-induced reproductive incompatibility may extend to the F2: broods of virgin F1 females from U x W crosses sometimes suffer increased mortality rates. This F2 effect is called hybrid breakdown (HB). Several isofemale lines derived from mites collected from rose and cucumber plants had been previously tested for CI. Here we report on the results obtained for HB.


Assuntos
Reprodução/fisiologia , Tetranychidae/microbiologia , Wolbachia/crescimento & desenvolvimento , Animais , Cruzamentos Genéticos , Feminino , Masculino , Razão de Masculinidade , Tetranychidae/fisiologia
20.
Evolution ; 56(7): 1331-9, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12206235

RESUMO

Wolbachia pipientis is a bacterium that induces cytoplasmic incompatibility (CI), the phenomenon in which infected males are reproductively incompatible with uninfected females. CI spreads in a population of hosts because it reduces the fitness of uninfected females relative to infected females. CI encompasses two steps: modification (mod) of sperm of infected males and rescuing (resc) of these chromosomes by Wolbachia in the egg. Infections associated with CI have mod+ resa+ phenotypes. However, mod- resc+ phenotypes also exist; these do not result in CI. Assuming mod/resc phenotypes are properties of the symbiont, theory predicts that mod- resc+ infections can only spread in a host population where a mod+ resc+ infection already occurs. A mod- resc+ infection spreads if the cost it imposes on the infected females is lower than the cost inflicted by the resident (mod+ resc+) infection. Furthermore, introduction of a mod- Wolbachia eventually drives infection to extinction. The uninfected population that results can be recolonized by a CI-causing Wolbachia. Here, we investigated whether variability for induction of CI was present in two Tetranychus urticae populations. In one population all isofemale lines tested were mod-. In the other, mod+ resc+ and mod- resc+ isofemale lines coexisted. We found no evidence for a cost difference to females expressing either type (mod-/-). Infections in the two populations could not be distinguished based on sequences of two Wolbachia genes. We consider the possibility that mod- is a host effect through a population dynamics model. A mod- host allele leads to infection extinction in the absence of fecundity differences. Furthermore, the uninfected population that results is immune to reestablishment of the (same) CI-causing Wolbachia.


Assuntos
Citoplasma/microbiologia , Ácaros/microbiologia , Wolbachia/fisiologia , Animais , Citoplasma/fisiologia , Variação Genética , Masculino , Ácaros/fisiologia , Modelos Teóricos , Reprodução/fisiologia , Wolbachia/genética , Wolbachia/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...