Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(24): 11041-11052, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38831561

RESUMO

The Wadsley-Roth family of transition metal oxide phases are a promising class of anode materials for Li-ion batteries due to their open crystal structures and their ability to intercalate Li at high rates. Unfortunately, most early transition metal oxides that adopt a Wadsley-Roth crystal structure intercalate Li at voltages that are too high for most battery applications. First-principles electronic structure calculations are performed to elucidate redox mechanisms in Wadsley-Roth phases with the aim of determining how they depend on crystal structure. A comparative study of two very distinct polymorphs of Nb2O5 reveal two redox mechanisms: (i) an atom-centered redox mechanism at early stages of Li intercalation and (ii) a redox mechanism at intermediate to high Li concentrations involving the bonding orbitals of metal-metal dimers formed by edge-sharing Nb cations. Our study motivates several design principles to guide the development of new Wadsley-Roth phases with superior electrochemical properties.

2.
Chem Mater ; 35(22): 9657-9668, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38047183

RESUMO

The TiNb2O7 Wadsley-Roth phase is a promising anode material for Li-ion batteries, enabling fast cycling and high capacities. While already used in commercial batteries, many fundamental electronic and thermodynamic properties of LixTiNb2O7 remain poorly understood. We report on an in-depth first-principles study of the redox mechanisms, structural changes, and electrochemical properties of LixTiNb2O7 as a function of Li concentration. First-principles electronic structure calculations reveal an unconventional redox mechanism upon Li insertion that results in the formation of metal-metal bonds. This metal dimer redox mechanism has important structural consequences as it results in a shortening of cation-pair distances, which in turn affects lattice parameters of the host and thereby alters Li site preferences as the Li concentration is varied. The new insights about redox mechanisms in TiNb2O7 and their effect on the structure and Li site preferences provide guidance on how the electrochemical properties of a promising class of anode materials can be tailored by exploiting the tremendous structural and chemical diversity of Wadsley-Roth phases.

3.
Inorg Chem ; 62(42): 17317-17332, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37816157

RESUMO

Wadsley-Roth phases have emerged as highly promising anode materials for Li-ion batteries and are an important class of phases that can form as part of the oxide scales of refractory multiprinciple element alloys. An algorithmic approach is described to systematically enumerate two classes of Wadsley-Roth crystallographic shear structures. An analysis of algorithmically generated Wadsley-Roth phases reveals that a diverse set of oxide crystal structures belongs to the Wadsley-Roth family of phases. First-principles calculations enable the identification of crystallographic and chemical factors that affect Wadsley-Roth phase stability, pointing in particular to the importance of the number and nature of the edges shared by neighboring metal-oxygen octahedra. A systematic study of Wadsley-Roth phases in the Ti-Nb-O ternary system shows that the cations with the highest oxidation states segregate to octahedral sites that minimize the number of shared edges, while cations with the lowest oxidation state accumulate to edge-sharing octahedra at shear boundaries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...