Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol ; 147(1): 75, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656399

RESUMO

In multiple sclerosis (MS), persisting disability can occur independent of relapse activity or development of new central nervous system (CNS) inflammatory lesions, termed chronic progression. This process occurs early and it is mostly driven by cells within the CNS. One promising strategy to control progression of MS is the inhibition of the enzyme Bruton's tyrosine kinase (BTK), which is centrally involved in the activation of both B cells and myeloid cells, such as macrophages and microglia. The benefit of BTK inhibition by evobrutinib was shown as we observed reduced pro-inflammatory activation of microglia when treating chronic experimental autoimmune encephalomyelitis (EAE) or following the adoptive transfer of activated T cells. Additionally, in a model of toxic demyelination, evobrutinib-mediated BTK inhibition promoted the clearance of myelin debris by microglia, leading to an accelerated remyelination. These findings highlight that BTK inhibition has the potential to counteract underlying chronic progression of MS.


Assuntos
Tirosina Quinase da Agamaglobulinemia , Encefalomielite Autoimune Experimental , Microglia , Bainha de Mielina , Piperidinas , Pirimidinas , Animais , Feminino , Camundongos , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Tirosina Quinase da Agamaglobulinemia/metabolismo , Compostos de Bifenilo/farmacologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/patologia , Camundongos Endogâmicos C57BL , Microglia/patologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Bainha de Mielina/patologia , Bainha de Mielina/metabolismo , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Remielinização/fisiologia , Remielinização/efeitos dos fármacos
2.
Expert Opin Ther Targets ; 27(4-5): 347-359, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37272515

RESUMO

INTRODUCTION: Multiple sclerosis (MS) is the most common demyelinating disease of the central nervous system (CNS). Although there are several disease-modifying therapies that can effectively manage MS relapses, the treatment of chronic progressive MS remains a difficult task. CNS-compartmentalized inflammation plays a primary role in progressive MS, especially by activated microglia. In this context, Bruton's tyrosine kinase (BTK) inhibition may be a promising therapeutic approach, as the enzyme is centrally involved in the activation of B cells as well as myeloid cells, such as macrophages and microglia. AREAS COVERED: This paper discusses a novel and promising approach for MS treatment. We discuss the factors assumed to promote progression in MS and how this process could be counteracted by BTK inhibition, as well as summarize all available clinical data on the usefulness of this therapeutic approach for halting MS progression. EXPERT OPINION: Current therapeutic approaches in MS are effective for treating relapses but fail to halt progression of the disease. This reflects the emerging concept that the underlying pathophysiology of chronic progressive MS differs from that of relapsing-remitting MS. Understanding the CNS intrinsic process in more detail provides novel therapeutic targets, and one of these may be the inhibition of the enzyme BTK.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/tratamento farmacológico , Tirosina Quinase da Agamaglobulinemia , Linfócitos B , Inflamação/tratamento farmacológico , Macrófagos , Inibidores de Proteínas Quinases/farmacologia
3.
Biology (Basel) ; 11(1)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35053134

RESUMO

Atoh8 belongs to a large superfamily of transcriptional regulators called basic helix-loop-helix (bHLH) proteins. bHLH proteins have been identified in a wide range of organisms from yeast to humans. The members of this special group of transcription factors were found to be involved not only in embryonic development but also in disease initiation and its progression. Given their importance in several fundamental processes, the translation, subcellular location and turnover of bHLH proteins is tightly regulated. Alterations in the expression of bHLH proteins have been associated with multiple diseases also in context with Atoh8 which seems to unfold its functions as both transcriptional activator and repressor. Like many other bHLH transcription factors, so far, Atoh8 has also been observed to be involved in both embryonic development and carcinogenesis where it mainly acts as tumor suppressor. This review summarizes our current understanding of Atoh8 structure, function and regulation and its complex and partially controversial involvement in development and disease.

4.
J Neuropathol Exp Neurol ; 75(4): 347-57, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26945034

RESUMO

Amyotrophic lateral sclerosis (ALS) is a common neurodegenerative disease that affects motor neurons in the spinal cord and motor cortex. Various mouse models have been used to investigate the progression of the pathology of sporadic and familial ALS. Degeneration in the spinal cord and motor cortex in the Wobbler mouse model of sporadic ALS have been documented, but alterations of the cerebellum during disease progression have not been well characterized. We analyzed neurodegeneration and inflammatory responses in the cerebellar cortex of preclinical (p20), clinical (p40), and late (p60) stages in these mice. We did not identify evidence of neuron cell death, but we observed an inflammatory response detected by IL1B and TNFA expression by quantitative PCR, increased activated microglia and astrocytosis by immunohistochemistry, and ultrastructural abnormalities in the cerebella of Wobbler mice at late stages. These alterations may be caused by protein aggregations and variations in the distribution of cytoskeletal proteins; they might be reflected in the early manifestation of head tremor, which precedes motor deficits in these mice. Thus, we conclude that, in addition to the motor cortex and spinal cord, the cerebellum is affected by neurodegenerative and inflammatory processes in the Wobbler mouse model of ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Cerebelo/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Proteínas de Transporte Vesicular/genética , Fatores Etários , Animais , Cerebelo/metabolismo , Cerebelo/ultraestrutura , Proteínas de Ligação a DNA/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Microscopia Eletrônica de Varredura , Mutação/genética , Neuroglia/metabolismo , Neuroglia/patologia , Neuroglia/ultraestrutura , Neurônios/metabolismo , Neurônios/patologia , Neurônios/ultraestrutura , RNA Mensageiro/metabolismo , Coloração pela Prata , Fator de Crescimento Transformador beta1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
5.
J Neuroinflammation ; 12: 215, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26597538

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder of the upper and lower motor neurons, characterized by rapid progressive weakness, muscle atrophy, dysarthria, dysphagia, and dyspnea. Whereas the exact cause of ALS remains uncertain, the wobbler mouse (phenotype WR; genotype wr/wr) equally develops a progressive degeneration of motor neurons in the spinal cord and motor cortex with striking similarities to sporadic human ALS, suggesting the possibility of a common pathway to cell death. METHODS: With the aid of immunohistochemistry, confocal laser scanning microscopy, and transmission electron microscopy techniques, we analyze the proliferation behavior of microglial cells and astrocytes. We also investigate possible motor neuron death in the mouse motor cortex at different stages of the wobbler disease, which so far has not received much attention. RESULTS: An abnormal density of Iba-1-positive microglial cells expressing pro-inflammatory tumor necrosis factor (TNF) alpha- and glial fibrillary acidic protein (GFAP)-positive activated astroglial cells was detected in the motor cortex region of the WR mouse 40 days postnatal (d.p.n.). Motor neurons in the same area show caspase 3 activation indicating neurodegenerative processes, which may cause progressive paralysis of the WR mice. It could also cause cell degeneration, such as vacuolization, dilation of the ER, and swollen mitochondria at the same time, and support the assumption that inflammation might be an important contributing factor of motor neuron degeneration. This would appear to be confirmed by the fact that there was no conspicuous increase of microglial cells and astrocytes in the motor cortex of control mice at any time. CONCLUSIONS: Activated microglial cells secrete a variety of pro-inflammatory and neurotoxic factors, such as TNF alpha, which could initiate apoptotic processes in the affected wobbler motor neurons, as reflected by caspase 3 activation, and thus, the neuroinflammatory processes might influence or exacerbate the neurodegeneration. Although it remains to be clarified whether the immune response is primary or secondary and how harmful or beneficial it is in the WR motor neuron disease, anti-inflammatory treatment might be considered.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Modelos Animais de Doenças , Mediadores da Inflamação , Córtex Motor/patologia , Neurônios/patologia , Esclerose Lateral Amiotrófica/metabolismo , Animais , Morte Celular/fisiologia , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Microglia/patologia , Córtex Motor/metabolismo , Neurônios/metabolismo
6.
Ann Anat ; 200: 118-24, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25929815

RESUMO

Mouse breeding is of importance to a whole range of medical and biological research. There are many known mouse models for motor neuron diseases. However, it must be kept in mind that especially mouse models for amyotrophic lateral sclerosis develop severe symptoms causing intense stress. This article is designed to summarize conscientious work with the wobbler mouse, a model for the sporadic form of amyotrophic lateral sclerosis. This mouse model is characterized by a degeneration of α-motor-neurons leading to head tremor, loss of body weight and rapidly progressive paralysis. Although this mouse model has been known since 1956, there are no guidelines for breeding wobbler mice. Due to the lack of such guidelines the present study tries to close this gap and implements a manual for further studies. It includes the whole workflow in regard to wobbler mice from breeding and animal care taking, genotyping and phenotype analysis, but also gives some examples for the use of various neuronal tissues for histological investigation. Beside the progress in research a second aim should always be the enhancement of mouse welfare and reduction of stress for the laboratory animals.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Manuais como Assunto , Camundongos Mutantes Neurológicos/fisiologia , Esclerose Lateral Amiotrófica/psicologia , Criação de Animais Domésticos , Bem-Estar do Animal , Animais , Cruzamento , Modelos Animais de Doenças , Progressão da Doença , Genótipo , Imuno-Histoquímica , Camundongos , Camundongos Mutantes Neurológicos/genética , Neurônios Motores/patologia , Paralisia/patologia , Fenótipo , Estresse Psicológico/prevenção & controle , Tremor/etiologia , Tremor/genética , Redução de Peso , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...