Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 109(3): 878-85, 2001 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11303941

RESUMO

The problem of the scattering of harmonic plane waves by a rough half-plane is studied here. The surface roughness is finite. The slope of the irregularity is taken as arbitrary. Two boundary conditions are considered, those of Dirichlet and Neumann. An asymptotic solution is obtained, when the wavelength lambda of the incident wave is much larger than the characteristic length of the roughness iota, by means of the method of matched asymptotic expansions in terms of the small parameter epsilon= 2piiota/lambda. For the Dirichlet problem, the solution of the near and far fields is obtained up to O(epsilon2). The far field solution is given in terms of a coefficient that have a simple explicit expression, which also appears in the corresponding solution to the Neumann problem, already solved. Also the scattering cross section is given by simple formulas to O(epsilon3). It is noted that, for the Dirichlet problem, the leading term is of order epsilon3 which, by contrast, is different from that of the circular cylinder in full space, that is, of order epsilon(-1) (log epsilon)(-2). Some examples display the simplicity of the general results based on conformal mapping, which involve arcs of circle, polygonal lines, surface cracks and the like.

2.
Proc Natl Acad Sci U S A ; 75(5): 2059-63, 1978 May.
Artigo em Inglês | MEDLINE | ID: mdl-16592522

RESUMO

In previous papers Herrera developed a theory of connectivity that is applicable to the problem of connecting solutions defined in different regions, which occurs when solving partial differential equations and many problems of mechanics. In this paper we explain how complete connectivity conditions can be used to replace boundary integral equations in many situations. We show that completeness is satisfied not only in steady-state problems such as potential, reduced wave equation and static and quasi-static elasticity, but also in time-dependent problems such as heat and wave equations and dynamical elasticity. A method to obtain bases of connectivity conditions, which are independent of the regions considered, is also presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...