Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 26(24): 24748-24757, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31240656

RESUMO

Cadmium (Cd) toxicity has detrimental effects on plant metabolism and yield formation. This study examined the effects of Cd stress in rice and the possible role of calcium (Ca) in mitigating oxidative damage caused by Cd in two fragrant rice cultivars, i.e., Guixiangzhan and Meixiangzhan 2. The experimental treatments were composed of various Ca and Cd levels as individual, i.e., Ca at 2.5 and 5.0 mg/kg soil (Ca1 and Ca2, respectively), Cd at 50 and 100 mg/kg soil (Cd50 and Cd100, respectively), and combined, i.e., Ca1+Cd50, Ca1+Cd100, Ca2+Cd50, and Ca2+Cd100. Plants without Ca and Cd application were taken as control (CK). Results showed that Cd stress led to a substantial decline in the photosynthetic pigments, i.e., Chl a, Chl b, and carotenoids, while enhanced oxidative damage in terms of increased levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA) and electrolyte leakage (EL) in both rice cultivars. Moreover, Cd stress hampered the activities of enzymatic antioxidants, i.e., superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), with lowest antioxidant activities were recorded at Cd100. The overall trend (lowest to highest) for antioxidant activities across treatments was recorded as Cd100 < Ca2+Cd100 < Cd50 < Ca1+Cd100 < CK < Ca1 < Ca1+Cd50 < Ca2+Cd50 < Ca2. Similarly, Ca amendment improved the proline, soluble protein, and soluble sugar contents in both rice cultivars under Cd stress condition. Comparing Ca2 with CK, the yield and related components, i.e., number of panicles, spikelets per panicle, seed setting rate, 1000 grain weight, and grain yield, were found to increase by 13.08, 2.39, 4.03, 5.86, and 27.53% for Guixiangzhan and 16.48, 5.19, 6.87, 15.44, and 51.16% for Meixiangzhan, respectively. Furthermore, Cd contents in roots, stems, leaves, and grains increased with increased Cd concentration applied and reduced with Ca amendment. The Cd contents in grains for all Ca+Cd levels are statistically at par with each other and significantly lower (P < 0.05) than those for individual Cd application. Hence, Ca amendment can be an appropriate approach to ameliorate the toxic effects of Cd in crops grown under Cd-contaminated soils.


Assuntos
Antioxidantes/química , Cádmio/metabolismo , Cálcio/metabolismo , Oryza/metabolismo , Antioxidantes/metabolismo , Cádmio/química , Cálcio/química , Catalase/metabolismo , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Peroxidase/metabolismo , Peroxidases/metabolismo , Fotossíntese/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Sementes/metabolismo , Solo , Superóxido Dismutase/metabolismo
2.
Front Plant Sci ; 8: 1388, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28855910

RESUMO

Plants respond to cold stress by modulating biochemical pathways and array of molecular events. Plant morphology is also affected by the onset of cold conditions culminating at repression in growth as well as yield reduction. As a preventive measure, cascades of complex signal transduction pathways are employed that permit plants to endure freezing or chilling periods. The signaling pathways and related events are regulated by the plant hormonal activity. Recent investigations have provided a prospective understanding about plant response to cold stress by means of developmental pathways e.g., moderate growth involved in cold tolerance. Cold acclimation assays and bioinformatics analyses have revealed the role of potential transcription factors and expression of genes like CBF, COR in response to low temperature stress. Capsella bursa-pastoris is a considerable model plant system for evolutionary and developmental studies. On different occasions it has been proved that C. bursa-pastoris is more capable of tolerating cold than A. thaliana. But, the mechanism for enhanced low or freezing temperature tolerance is still not clear and demands intensive research. Additionally, identification and validation of cold responsive genes in this candidate plant species is imperative for plant stress physiology and molecular breeding studies to improve cold tolerance in crops. We have analyzed the role of different genes and hormones in regulating plant cold resistance with special reference to C. bursa-pastoris. Review of collected data displays potential ability of Capsella as model plant for improvement in cold stress regulation. Information is summarized on cold stress signaling by hormonal control which highlights the substantial achievements and designate gaps that still happen in our understanding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...