Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 44(14)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38408873

RESUMO

Networks are a useful mathematical tool for capturing the complexity of the world. In a previous behavioral study, we showed that human adults were sensitive to the high-level network structure underlying auditory sequences, even when presented with incomplete information. Their performance was best explained by a mathematical model compatible with associative learning principles, based on the integration of the transition probabilities between adjacent and nonadjacent elements with a memory decay. In the present study, we explored the neural correlates of this hypothesis via magnetoencephalography (MEG). Participants (N = 23, 16 females) passively listened to sequences of tones organized in a sparse community network structure comprising two communities. An early difference (∼150 ms) was observed in the brain responses to tone transitions with similar transition probability but occurring either within or between communities. This result implies a rapid and automatic encoding of the sequence structure. Using time-resolved decoding, we estimated the duration and overlap of the representation of each tone. The decoding performance exhibited exponential decay, resulting in a significant overlap between the representations of successive tones. Based on this extended decay profile, we estimated a long-horizon associative learning novelty index for each transition and found a correlation of this measure with the MEG signal. Overall, our study sheds light on the neural mechanisms underlying human sensitivity to network structures and highlights the potential role of Hebbian-like mechanisms in supporting learning at various temporal scales.


Assuntos
Percepção Auditiva , Aprendizagem , Adulto , Feminino , Humanos , Percepção Auditiva/fisiologia , Aprendizagem/fisiologia , Encéfalo/fisiologia , Magnetoencefalografia/métodos , Condicionamento Clássico , Estimulação Acústica
2.
Philos Trans A Math Phys Eng Sci ; 381(2251): 20220050, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37271169

RESUMO

Expert problem-solving is driven by powerful languages for thinking about problems and their solutions. Acquiring expertise means learning these languages-systems of concepts, alongside the skills to use them. We present DreamCoder, a system that learns to solve problems by writing programs. It builds expertise by creating domain-specific programming languages for expressing domain concepts, together with neural networks to guide the search for programs within these languages. A 'wake-sleep' learning algorithm alternately extends the language with new symbolic abstractions and trains the neural network on imagined and replayed problems. DreamCoder solves both classic inductive programming tasks and creative tasks such as drawing pictures and building scenes. It rediscovers the basics of modern functional programming, vector algebra and classical physics, including Newton's and Coulomb's laws. Concepts are built compositionally from those learned earlier, yielding multilayered symbolic representations that are interpretable and transferrable to new tasks, while still growing scalably and flexibly with experience. This article is part of a discussion meeting issue 'Cognitive artificial intelligence'.

3.
Sci Rep ; 13(1): 10266, 2023 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-37355745

RESUMO

Data plots are widely used in science, journalism and politics, since they efficiently allow to depict a large amount of information. Graphicacy, the ability to understand graphs, has thus become a fundamental cultural skill comparable to literacy or numeracy. Here, we introduce a measure of intuitive graphicacy that assesses the perceptual ability to detect a trend in noisy scatterplots ("does this graph go up or down?"). In 3943 educated participants, responses vary as a sigmoid function of the t-value that a statistician would compute to detect a significant trend. We find a minimum level of core intuitive graphicacy even in unschooled participants living in remote Namibian villages (N = 87) and 6-year-old 1st-graders who never read a graph (N = 27). The sigmoid slope that we propose as a proxy of intuitive graphicacy increases with education and tightly correlates with statistical and mathematical knowledge, showing that experience contributes to refining graphical intuitions. Our tool, publicly available online, allows to quickly evaluate and formally quantify a perceptual building block of graphicacy.


Assuntos
Compreensão , Julgamento , Humanos , Matemática , Alfabetização , Intuição
4.
Cogn Psychol ; 139: 101527, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36403385

RESUMO

In various cultures and at all spatial scales, humans produce a rich complexity of geometric shapes such as lines, circles or spirals. Here, we propose that humans possess a language of thought for geometric shapes that can produce line drawings as recursive combinations of a minimal set of geometric primitives. We present a programming language, similar to Logo, that combines discrete numbers and continuous integration to form higher-level structures based on repetition, concatenation and embedding, and we show that the simplest programs in this language generate the fundamental geometric shapes observed in human cultures. On the perceptual side, we propose that shape perception in humans involves searching for the shortest program that correctly draws the image (program induction). A consequence of this framework is that the mental difficulty of remembering a shape should depend on its minimum description length (MDL) in the proposed language. In two experiments, we show that encoding and processing of geometric shapes is well predicted by MDL. Furthermore, our hypotheses predict additive laws for the psychological complexity of repeated, concatenated or embedded shapes, which we confirm experimentally.


Assuntos
Idioma , Rememoração Mental , Humanos
5.
Trends Cogn Sci ; 26(9): 751-766, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35933289

RESUMO

Natural language is often seen as the single factor that explains the cognitive singularity of the human species. Instead, we propose that humans possess multiple internal languages of thought, akin to computer languages, which encode and compress structures in various domains (mathematics, music, shape…). These languages rely on cortical circuits distinct from classical language areas. Each is characterized by: (i) the discretization of a domain using a small set of symbols, and (ii) their recursive composition into mental programs that encode nested repetitions with variations. In various tasks of elementary shape or sequence perception, minimum description length in the proposed languages captures human behavior and brain activity, whereas non-human primate data are captured by simpler nonsymbolic models. Our research argues in favor of discrete symbolic models of human thought.


Assuntos
Idioma , Percepção , Humanos , Matemática
6.
Cognition ; 225: 105112, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35366484

RESUMO

Exponential growth is frequently underestimated, an error that can have a heavy social cost in the context of epidemics. To clarify its origins, we measured the human capacity (N = 521) to extrapolate linear and exponential trends in scatterplots. Four factors were manipulated: the function underlying the data (linear or exponential), the response modality (pointing or venturing a number), the scale on the y axis (linear or logarithmic), and the amount of noise in the data. While linear extrapolation was precise and largely unbiased, we observed a consistent underestimation of noisy exponential growth, present for both pointing and numerical responses. A biased ideal-observer model could explain these data as an occasional misperception of noisy exponential graphs as quadratic curves. Importantly, this underestimation bias was mitigated by participants' math knowledge, by using a logarithmic scale, and by presenting a noiseless exponential curve rather than a noisy data plot, thus suggesting concrete avenues for interventions.


Assuntos
Idioma , Ruído , Viés , Humanos
7.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33846254

RESUMO

Among primates, humans are special in their ability to create and manipulate highly elaborate structures of language, mathematics, and music. Here we show that this sensitivity to abstract structure is already present in a much simpler domain: the visual perception of regular geometric shapes such as squares, rectangles, and parallelograms. We asked human subjects to detect an intruder shape among six quadrilaterals. Although the intruder was always defined by an identical amount of displacement of a single vertex, the results revealed a geometric regularity effect: detection was considerably easier when either the base shape or the intruder was a regular figure comprising right angles, parallelism, or symmetry rather than a more irregular shape. This effect was replicated in several tasks and in all human populations tested, including uneducated Himba adults and French kindergartners. Baboons, however, showed no such geometric regularity effect, even after extensive training. Baboon behavior was captured by convolutional neural networks (CNNs), but neither CNNs nor a variational autoencoder captured the human geometric regularity effect. However, a symbolic model, based on exact properties of Euclidean geometry, closely fitted human behavior. Our results indicate that the human propensity for symbolic abstraction permeates even elementary shape perception. They suggest a putative signature of human singularity and provide a challenge for nonsymbolic models of human shape perception.


Assuntos
Percepção de Forma/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Percepção Visual/fisiologia , Adulto , Animais , Pré-Escolar , Feminino , Humanos , Idioma , Masculino , Pessoa de Meia-Idade , Redes Neurais de Computação , Papio , Especificidade da Espécie , Visão Ocular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...