Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38868170

RESUMO

Seizures are caused by abnormally synchronous brain activity that can result in changes in muscle tone, such as twitching, stiffness, limpness, or rhythmic jerking. These behavioral manifestations are clear on visual inspection and the most widely used seizure scoring systems in preclinical models, such as the Racine scale in rodents, use these behavioral patterns in semiquantitative seizure intensity scores. However, visual inspection is time-consuming, low-throughput, and partially subjective, and there is a need for rigorously quantitative approaches that are scalable. In this study, we used supervised machine learning approaches to develop automated classifiers to predict seizure severity directly from noninvasive video data. Using the PTZ-induced seizure model in mice, we trained video-only classifiers to predict ictal events, combined these events to predict an univariate seizure intensity for a recording session, as well as time-varying seizure intensity scores. Our results show, for the first time, that seizure events and overall intensity can be rigorously quantified directly from overhead video of mice in a standard open field using supervised approaches. These results enable high-throughput, noninvasive, and standardized seizure scoring for downstream applications such as neurogenetics and therapeutic discovery.

2.
bioRxiv ; 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38318203

RESUMO

Changes in body mass are a key indicator of health and disease in humans and model organisms. Animal body mass is routinely monitored in husbandry and preclinical studies. In rodent studies, the current best method requires manually weighing the animal on a balance which has at least two consequences. First, direct handling of the animal induces stress and can have confounding effects on studies. Second, the acquired mass is static and not amenable to continuous assessment, and rapid mass changes can be missed. A noninvasive and continuous method of monitoring animal mass would have utility in multiple areas of biomedical research. Here, we test the feasibility of determining mouse body mass using video data. We combine computer vision methods with statistical modeling to demonstrate the feasibility of our approach. Our methods determine mouse mass with 4.8% error across highly genetically diverse mouse strains, with varied coat colors and mass. This error is low enough to replace manual weighing with image-based assessment in most mouse studies. We conclude that visual determination of rodent mass using video enables noninvasive and continuous monitoring and can improve animal welfare and preclinical studies.

3.
Cell Rep ; 38(2): 110231, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35021077

RESUMO

Gait and posture are often perturbed in many neurological, neuromuscular, and neuropsychiatric conditions. Rodents provide a tractable model for elucidating disease mechanisms and interventions. Here, we develop a neural-network-based assay that adopts the commonly used open field apparatus for mouse gait and posture analysis. We quantitate both with high precision across 62 strains of mice. We characterize four mutants with known gait deficits and demonstrate that multiple autism spectrum disorder (ASD) models show gait and posture deficits, implying this is a general feature of ASD. Mouse gait and posture measures are highly heritable and fall into three distinct classes. We conduct a genome-wide association study to define the genetic architecture of stride-level mouse movement in the open field. We provide a method for gait and posture extraction from the open field and one of the largest laboratory mouse gait and posture data resources for the research community.


Assuntos
Marcha/genética , Marcha/fisiologia , Equilíbrio Postural/fisiologia , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/fisiopatologia , Aprendizado Profundo , Comportamento Exploratório , Estudo de Associação Genômica Ampla/métodos , Camundongos , Movimento/fisiologia , Rede Nervosa/fisiologia , Teste de Campo Aberto/fisiologia , Equilíbrio Postural/genética
4.
Nat Aging ; 2(8): 756-766, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-37091193

RESUMO

Heterogeneity in biological aging manifests itself in health status and mortality. Frailty indices (FIs) capture health status in humans and model organisms. To accelerate our understanding of biological aging and carry out scalable interventional studies, high-throughput approaches are necessary. Here we introduce a machine-learning-based visual FI for mice that operates on video data from an open-field assay. We use machine vision to extract morphometric, gait and other behavioral features that correlate with FI score and age. We use these features to train a regression model that accurately predicts the normalized FI score within 0.04 ± 0.002 (mean absolute error). Unnormalized, this error is 1.08 ± 0.05, which is comparable to one FI item being mis-scored by 1 point or two FI items mis-scored by 0.5 points. This visual FI provides increased reproducibility and scalability that will enable large-scale mechanistic and interventional studies of aging in mice.


Assuntos
Fragilidade , Humanos , Camundongos , Animais , Idoso , Fragilidade/diagnóstico , Idoso Fragilizado , Reprodutibilidade dos Testes , Avaliação Geriátrica , Envelhecimento
5.
Elife ; 102021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33729153

RESUMO

Automated detection of complex animal behaviors remains a challenging problem in neuroscience, particularly for behaviors that consist of disparate sequential motions. Grooming is a prototypical stereotyped behavior that is often used as an endophenotype in psychiatric genetics. Here, we used mouse grooming behavior as an example and developed a general purpose neural network architecture capable of dynamic action detection at human observer-level performance and operating across dozens of mouse strains with high visual diversity. We provide insights into the amount of human annotated training data that are needed to achieve such performance. We surveyed grooming behavior in the open field in 2457 mice across 62 strains, determined its heritable components, conducted GWAS to outline its genetic architecture, and performed PheWAS to link human psychiatric traits through shared underlying genetics. Our general machine learning solution that automatically classifies complex behaviors in large datasets will facilitate systematic studies of behavioral mechanisms.


Behavior is one of the ultimate and most complex outputs of the body's central nervous system, which controls movement, emotion and mood. It is also influenced by a person's genetics. Scientists studying the link between behavior and genetics often conduct experiments using animals, whose actions can be more easily characterized than humans. However, this involves recording hours of video footage, typically of mice or flies. Researchers must then add labels to this footage, identifying certain behaviors before further analysis. This task of annotating video clips ­ similar to image captioning ­ is very time-consuming for investigators. But it could be automated by applying machine learning algorithms, trained with sufficient data. Some computer programs are already in use to detect patterns of behavior, however, there are some limitations. These programs could detect animal behavior (of flies and mice) in trimmed video clips, but not raw footage, and could not always accommodate different lighting conditions or experimental setups. Here, Geuther et al. set out to improve on these previous efforts to automate video annotation. To do so, they used over 1,250 video clips annotated by experienced researchers to develop a general-purpose neural network for detecting mouse behaviors. After sufficient training, the computer model could detect mouse grooming behaviors in raw, untrimmed video clips just as well as human observers could. It also worked with mice of different coat colors, body shapes and sizes in open field animal tests. Using the new computer model, Geuther et al. also studied the genetics underpinning behavior ­ far more thoroughly than previously possible ­ to explain why mice display different grooming behaviors. The algorithm analyzed 2,250 hours of video featuring over 60 kinds of mice and thousands of other animals. It found that mice bred in the laboratory groom less than mice recently collected from the wild do. Further analyses also identified genes linked to grooming traits in mice and found related genes in humans associated with behavioral disorders. Automating video annotation using machine learning models could alleviate the costs of running lengthy behavioral experiments and enhance the reproducibility of study results. The latter is vital for translating behavioral research findings in mice to humans. This study has also provided insights into the amount of human-annotated training data needed to develop high-performing computer models, along with new understandings of how genetics shapes behavior.


Assuntos
Comportamento Animal , Etologia/métodos , Asseio Animal , Aprendizado de Máquina , Redes Neurais de Computação , Animais , Etologia/instrumentação , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...