Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-26578893

RESUMO

Broadband spontaneous macroscopic neural oscillations are rhythmic cortical firing which were extensively examined during the last century, however, their possible origination is still controversial. In this work we show how macroscopic oscillations emerge in solely excitatory random networks and without topological constraints. We experimentally and theoretically show that these oscillations stem from the counterintuitive underlying mechanism-the intrinsic stochastic neuronal response failures (NRFs). These NRFs, which are characterized by short-term memory, lead to cooperation among neurons, resulting in sub- or several- Hertz macroscopic oscillations which coexist with high frequency gamma oscillations. A quantitative interplay between the statistical network properties and the emerging oscillations is supported by simulations of large networks based on single-neuron in-vitro experiments and a Langevin equation describing the network dynamics. Results call for the examination of these oscillations in the presence of inhibition and external drives.


Assuntos
Córtex Cerebral/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Animais , Animais Recém-Nascidos , Redes Neurais de Computação , Ratos , Ratos Sprague-Dawley
2.
Artigo em Inglês | MEDLINE | ID: mdl-26124707

RESUMO

Realizations of low firing rates in neural networks usually require globally balanced distributions among excitatory and inhibitory links, while feasibility of temporal coding is limited by neuronal millisecond precision. We show that cooperation, governing global network features, emerges through nodal properties, as opposed to link distributions. Using in vitro and in vivo experiments we demonstrate microsecond precision of neuronal response timings under low stimulation frequencies, whereas moderate frequencies result in a chaotic neuronal phase characterized by degraded precision. Above a critical stimulation frequency, which varies among neurons, response failures were found to emerge stochastically such that the neuron functions as a low pass filter, saturating the average inter-spike-interval. This intrinsic neuronal response impedance mechanism leads to cooperation on a network level, such that firing rates are suppressed toward the lowest neuronal critical frequency simultaneously with neuronal microsecond precision. Our findings open up opportunities of controlling global features of network dynamics through few nodes with extreme properties.


Assuntos
Potenciais de Ação/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Neurotransmissores/farmacologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Córtex Cerebral/citologia , Simulação por Computador , Estimulação Elétrica , Modelos Neurológicos , Ratos , Ratos Sprague-Dawley , Tempo de Reação/efeitos dos fármacos
3.
Front Neurosci ; 9: 508, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26834538

RESUMO

The experimental study of neural networks requires simultaneous measurements of a massive number of neurons, while monitoring properties of the connectivity, synaptic strengths and delays. Current technological barriers make such a mission unachievable. In addition, as a result of the enormous number of required measurements, the estimated network parameters would differ from the original ones. Here we present a versatile experimental technique, which enables the study of recurrent neural networks activity while being capable of dictating the network connectivity and synaptic strengths. This method is based on the observation that the response of neurons depends solely on their recent stimulations, a short-term memory. It allows a long-term scheme of stimulation and recording of a single neuron, to mimic simultaneous activity measurements of neurons in a recurrent network. Utilization of this technique demonstrates the spontaneous emergence of cooperative synchronous oscillations, in particular the coexistence of fast γ and slow δ oscillations, and opens the horizon for the experimental study of other cooperative phenomena within large-scale neural networks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...